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Abstract. Regional climate models (RCMs) are now commonly used to 

downscale climate change projections provided by global coupled models to 

resolutions that can be utilised at national and finer scales. Although this extra tier of 

complexity adds significant value, it inevitably contributes a further source of 

uncertainty, due to the regional modelling uncertainties involved. Here, an initial 

attempt is made to estimate the uncertainty that arises from typical variations in RCM 

formulation, focussing on changes in UK surface air temperature (SAT) and 

precipitation projected for the late twenty-first century. Data are provided by a 

relatively large suite of RCM and global model integrations with widely varying 

formulations. 

It is found that uncertainty in the formulation of the RCM has a relatively 

small, but non-negligible, impact on the range of possible outcomes of future UK 

seasonal mean climate. This uncertainty is largest in the summer season. It is also 

similar in magnitude to that of large-scale internal variations of the coupled climate 

system, and for SAT, it is less than the uncertainty due to the emissions scenario, 

whereas for precipitation it is probably larger. The largest source of uncertainty, for 

both variables and in all seasons, is the formulation of the global coupled model. The 

scale-dependency of uncertainty due to RCM formulation is also explored by 

considering its impact on projections of the difference in climate change between the 

north and south of the UK. Finally, the implications for the reliability of UK seasonal 

mean climate change projections are discussed. 
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1. Introduction 

 

Uncertainty in projected climate change arises from a number of sources (e.g. 

Cubasch et al. 2001): (1) the formulation and accuracy of the general circulation 

model (GCM); (2) the magnitude of anthropogenic emissions; and (3) the temporal 

and spatial impact of natural variations internal to the climate system. However, in 

order to provide projections of local climate change required by the impacts 

community and policy makers, a further tier of complexity is required. This is the 

addition of high-resolution detail, with one of the most utilised methods being the 

nesting of high resolution regional climate models (RCMs) within the GCMs (e.g. 

Giorgi et al. 2001; Leung et al. 2003). Thus a fourth source of uncertainty is 

introduced, which is the reliability with which such models are able to downscale 

global projections to national and finer scales. 

This study aims to provide an initial estimate of the relative importance of the 

uncertainty arising from RCM formulation, and compare it with the other sources of 

uncertainty noted above. Our focus is on the United Kingdom and Irish Republic 

(hereafter UKIR), as an example of a region that is inadequately resolved by the 

current generation of GCMs but well resolved by RCMs. From a pragmatic 

viewpoint, it is hoped that this will contribute to guidance on the extent to which 

resources should be invested in multi-model ensembles of RCM integrations, rather 

than further enhancing the ensemble of GCM integrations. A further aim is to update 

published information on projections of seasonal mean climate change for UKIR, and 

their uncertainties (Hulme et al. 2002; Giorgi et al. 2004).  

 

2. Data 

 

The data for this study are derived from two sources. First, the EU 

PRUDENCE project (Christensen et al. 2002) has pooled a coordinated set of model 

integrations to produce a large matrix of RCM data. (Note that all acronyms used this 

paper, including modelling institutes, are defined in Appendix A.) These data enable 

the evaluation of uncertainty due to either RCM formulation alone, GCM formulation 

alone (but see below), emissions uncertainty, or uncertainty due to internal variations 

of the climate system. The matrix of data used in this study is shown in Table 1. Each 

control integration simulates the period 1960-1990, and each scenario integration 
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simulates 2070-2100 using either the SRES A2 or B2 emissions scenarios 

(Nakicenovic et al. 2000). The majority of models are driven by a Met Office high-

resolution (1.25° x 1.875°) global atmospheric GCM (HadAM3H or HadAM3P), 

which in turn is driven by observed SSTs for the control integrations, or with 

HadCM3 SST anomalies added for the scenario integrations (HadCM3 is a Met 

Office global coupled model, with horizontal resolution 2.5° x 3.75°). The RCM 

integrations driven by the DKRZ/MPI global coupled model ECHAM4/OPYC are 

driven directly by these data, without the intermediate step of a high-resolution 

atmospheric GCM. Also, small ensembles of integrations were carried out for the 

DMI and Met Office RCMs, whereby each RCM ensemble member takes its 

boundary data from different members of the atmospheric GCM ensemble, and these 

in turn take their SST anomalies from different members of the coupled model 

ensemble. Last, all RCM data have been interpolated to a common 0.5° grid, 

preserving each model’s coastline as far as possible. 

These data can be used to estimate (a) the uncertainty due to RCM formulation 

by comparing the climate change responses in 9 different RCMs all forced by 

common boundary data from a single GCM (the 1st and 4th rows of Table 1); (b) the 

uncertainty due to projected emissions rates by comparing the response to the A2 and 

B2 scenarios averaged over 5 RCMs; and (c) the uncertainty due to large-scale 

internal climate variations by comparing the responses between 3 Met Office RCM 

simulations and between 3 DMI RCM simulations each nested within an ensemble of 

integrations generated by the GCM (so that differences between these RCM ensemble 

members are primarily due to differences between the GCM ensemble members). 

Table 2 provides a quick reference to this information and defines the abbreviations 

used in the figures. 

However, in order to estimate the uncertainty due to the formulation of the 

driving GCM, the PRUDENCE data provide only two RCMs forced by two different 

GCMs (see Table 1 for full details). Ideally, data are required from an experiment set 

whereby one (or more) RCM(s) have been forced by a larger and more representative 

sample of GCMs. Unfortunately such experiments have not yet been carried out, and 

so an alternative approach is adopted here of utilising data directly from GCMs. These 

data have been obtained from the Intergovernmental Panel for Climate Change 

(IPCC) Data Distribution Centre (DDC), from which 7 models are available forced by 

the SRES A2 scenario: the CCCma model CGCM1, the CCSR/NIES model, the 
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CSIRO model Mk2, the DKRZ/MPI model ECHAM4/OPYC3, the GFDL model 

R15-a, the Met Office model HadCM3, and the NCAR model DOE-PCM. The same 

time periods as for the PRUDENCE RCM data were extracted. The disadvantage of 

this approach is that since the data have not been downscaled by an RCM the resulting 

uncertainty range is not strictly comparable with the other uncertainties that are 

computed. Nevertheless the UKIR averages for the Met Office and DKRZ/MPI 

GCMs are broadly similar to their downscaled companions from PRUDENCE 

(Appendix B), so it is judged that this approach is a better option than basing our 

assessment on the diminutive sample of PRUDENCE models driven by different 

GCMs. 

 

3. Estimated Uncertainties for UKIR Averages 

 

Figures 1 and 2 illustrate projections of late twenty-first century anomalies 

averaged over UKIR, for seasonal mean surface air temperature (SAT) and 

precipitation, grouped to demonstrate their sensitivity to each source of uncertainty. 

Thus, in this section we focus on the spatial scale of a few GCM grid boxes 

(~1000km). The averaging region (land points only) is determined by the coastal 

topology of each model. Also shown is the standard deviation (SD) of the data within 

each group. Note that because sample sizes are rather small (due to obvious 

limitations in computing power), these enable only an approximate comparison of 

uncertainties, and should be interpreted as ‘descriptive’ rather than ‘quantitative’. 

They are displayed primarily to aid more rapid assimilation of the uncertainties and to 

avoid the possibility of being misled by a purely visual interpretation. Four further 

caveats should also be noted. First, the uncertainty due to the emissions scenario will 

be biased slightly low (by about 15%), because more extreme scenarios (such as B1 

and A1FI) are not included1. Second, the uncertainties due to the emissions scenario 

and to the GCM formulation will on the other hand be overestimated because they 

also include some variability due to internal climate anomalies. Third, it is assumed 

that the SDs of each of the three RCM-based groupings (‘RCM’, ‘Internal’ and 

‘Emissions’) are independent of the choice of GCM(s) by which they are driven (i.e. 

only their mean depends on the driving GCM); this can only be supported (or refuted) 

as further experiments become available. Last, it is assumed that all models are 

equally reliable; additional analysis could for example seek to weight each model by 
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its ability to reproduce current climate (c.f. Giorgi and Mearns 2002; Murphy et al. 

2004).  

For SAT, Figure 1 shows that uncertainty in UKIR average climate change, 

due to RCM formulation alone, is relatively small in all four seasons. It is similar to 

the uncertainty due to large-scale internal variations of the climate system, but 

somewhat smaller than that arising from the emissions scenarios, and considerably 

smaller than that arising from the formulation of the GCM. This is because a 

significant component of the RCM SAT response over UKIR is dependent on the 

lower tropospheric temperature response at the lateral boundaries (particularly the 

western boundary) and on the temperature response of the surrounding ocean. Both 

these factors are identically specified by the driving GCM that is common to all 

RCMs in the first grouping of Figure 1, and hence there is little spread between them. 

However, some RCM uncertainty is nevertheless apparent, and its source lies in the 

variety of plausible formulations of model parameterizations that govern local 

feedback mechanisms and the radiative response to greenhouse gases. Note also that 

these make a greater contribution to uncertainty in summer when the ambient flow is 

weaker, thus reducing heat advection from the surrounding ocean and lateral 

boundaries. 

The actual projections for UKIR climate change are, not surprisingly, a 

warming in all seasons. However, the season of peak warming remains unclear. The 

first 3 groups in each panel of Figure 1 suggest that the warming anomaly will be 

largest in summer and autumn, but this merely reflects the seasonality of their driving 

model, HadCM3 (marked by the arrow in the right-hand grouping of each panel). The 

large contribution to uncertainty arising from the GCM formulation is emphasised by 

the result that these GCMs are almost equally split as to whether autumn, summer or 

winter will be the season with the largest warming. Uncertainty due to emissions may 

also be substantial (see caveats above), but probably less than that due to GCM 

formulation, and with associated projection errors that would be likely proportional 

between seasons. 

For precipitation (Figure 2), the relative contributions of three of the sources 

of uncertainty – those due to RCM formulation, large-scale internal variations, and 

GCM formulation – are similar to that found for SAT. Thus, the first two contribute 

about equally, and the GCM formulation contributes more by a considerable margin. 

All are substantially larger than the sensitivity to the emissions scenario. The larger 
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sensitivity of precipitation to differences in GCM formulation and internal variations 

of the GCM, compared to the emissions scenario, is well-known (see Raisanen 2001; 

Giorgi and Mearns 2002, for example). The larger contribution of the RCM 

formulation to precipitation uncertainty (compared to the contribution of the 

emissions scenario) can be explained by a greater dependence of precipitation 

(compared to SAT) on local physics and its reduced dependence on information 

transferred from the common lateral and ocean boundary data. Note also that the 

uncertainty due to RCM formulation again peaks in summer. 

The sign of the seasonal mean precipitation changes portrayed by the 

experiments is most robust in winter, when 6 out of 7 GCMs predict that mean rainfall 

will be enhanced by at least 10%; this is consistent with the analysis of Hulme et al. 

(2002) and the single model analyses of Giorgi et al. (2004) and Rowell (2005). In 

summer, however, the uncertainty in GCM formulation suggests that ‘no change’ and 

‘notable drying’ are both plausible outcomes, with 4 out of 7 models predicting an 

absolute change of less than 10%, and the remainder predicting a reduction of more 

than 25%. During the equinoctial seasons, and in the annual mean (Figure 3), rainfall 

is projected to be either close to present-day conditions, or to become wetter.  

 

4. Estimated Uncertainties at the Sub-National Scale 

 

Here, we consider the impact of uncertainty due to RCM formulation at the 

finer spatial scales often required by users. Specifically, these are the scales of, or 

below, that of a single GCM grid box (of order 300km). As an example, attention is 

focused on changes in the north-south difference in SAT and precipitation across the 

UK, defined here as the difference between climate change anomalies averaged over 

British land points north of 55°N and south of 52.5°N (each computed as percentage 

changes for precipitation). In this way the UK average response is excluded, filtering 

out the larger scale anomalies that have already been addressed in section 3. Results 

are shown in Figure 4, and compared with the estimated uncertainty arising from 

large-scale internal climate variations. Note however that these results are based on 

the large-scale forcing from only one global model, and so do not include the inter-

GCM component of uncertainty. Due to the small spatial scales involved, this would 

require RCM integrations driven by several different GCMs to become available. 
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Also, GCM data from the IPCC-DDC cannot be used in this case since the aim is to 

examine spatial scales that these models cannot resolve. 

First consider the nature of the response of this ‘difference index’ to 

anthropogenic climate change. All models show that Scotland will warm less than 

southern England/Wales, and that this disparity is strengthened in summer (Figure 

4a). This can be expected from the more maritime climate of the northern UK2, and 

because the response of SAT over continental Europe is largest in summer in 

HadAM3H. For precipitation, Figure 4b shows that the RCMs agree that the 

percentage increase in winter will be lower in Scotland than in the southern UK. This 

is consistent with an increase in storm density over the northern UK in HadAM3H 

(R.E. McDonald, personal communication, 2004), and that the majority of rain falls to 

the south of cyclonic centres. However the precise location of storm track anomalies 

on which this response depends is likely to be highly dependent on the driving GCM, 

implying much larger total uncertainty. In summer, the percentage decrease in rainfall 

is larger in the southern UK, but this may too be influenced by large scale features of 

the driving GCM, which Rowell and Jones (2005) judge to have an uncertain impact 

on UK summer rainfall. 

Next, we consider the uncertainties shown in Figure 4, and compare these with 

those shown in Figures 1 and 2. Again, the summer season has the highest sensitivity 

to RCM formulation due to the larger role of RCM physics in the presence of weaker 

flow from the lateral boundaries. It can be seen that both the RCM and large-scale 

internal sources of uncertainty tend to be lower for SAT for the sub-national 

difference index, but generally higher for precipitation. Possible mechanisms for these 

scale-dependencies of uncertainty are discussed in Appendix C. Note, in particular, 

that such scale-dependency is likely to be highly dependent on the indices and 

geographic region considered, so for other examples rather different results may be 

found. 

 Finally, to illustrate more clearly the impact that these sources of uncertainty 

can have on sub-national patterns of future climate anomalies, Figure 5 shows maps 

of the mean response over UKIR for summer precipitation. The variety of possible 

responses is clear, ranging from a near-uniform drying across UKIR to significant 

regional variations. This variety is due to differences in both the RCM formulation 

and the large-scale chaotic component of climate anomalies. Again we emphasize that 
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the uncertainties due to the formulation of the driving global GCM, and due to 

anthropogenic emissions, are not included here. 

 

5. Conclusions 

 

The work presented here has extended previous assessments of future UKIR 

seasonal mean climate change (e.g. Hulme et al. 2002; Giorgi et al. 2004) by more 

closely integrating a description of projected anomalies with an initial estimate of all 

sources of uncertainty. To this end, the availability of the PRUDENCE data, along 

with that of the IPCC-DDC, has been essential. 

 A particular focus has been an assessment of the extent to which uncertainties 

in the regional models used for downscaling contribute to the reliability (or lack of 

reliability) of UKIR climate projections. This additional uncertainty may also be 

interpreted from a physical point of view (as well as the experimental point of view 

emphasised here), in that as finer scales are considered, additional phenomena and 

processes must be modelled, thus increasing the scope for disagreement amongst 

models. This source of uncertainty is therefore also relevant within a ‘consistent’ 

modelling framework, such as an RCM/GCM combination with identical physics, or a 

variable-resolution GCM such as described by Deque et al. (1998).  

Although the sample of models available here is necessarily small, some broad 

conclusions may be drawn. First, the uncertainty due to RCM formulation is relatively 

small for average UKIR seasonal mean data. This results in differences between 

model responses (quoted here as twice their standard deviation) of approximately 0.3-

0.6°C for SAT and 5-10% of current climate for precipitation. This is of similar 

magnitude to the uncertainty due to large-scale internal variations of the global 

coupled climate system. For SAT, it is also less than the uncertainty arising from 

anthropogenic emissions at the end of the century, but for precipitation it is probably 

larger than this uncertainty. However, for both SAT and precipitation, and in all 

seasons, the dominant source of uncertainty is that arising from formulations of the 

structure and physics of the coupled GCMs. An additional finding at the UKIR-

average scale has been that the uncertainty due to RCM formulation is probably 

largest in summer, which is consistent with a weaker ambient flow allowing a greater 

influence of the RCM physics. This larger influence of uncertainty due to the RCM is 

also likely to extend to other seasons over some regions, particularly where the 
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ambient flow is weaker than that of the UK (reducing the influence of the GCM), or 

where the surface is more heterogeneous (e.g. steep mountains), or where the surface 

provides stronger feedbacks (through snow or soil moisture sensitivity). 

The spatial-dependency of the uncertainty due to RCM formulation has also 

been considered, by examining spatial scales that the GCMs cannot resolve. For the 

example shown here – comparison of the UK average data with an index of the 

difference of climate change anomalies between the northern and southern UK – 

uncertainty appears to be lower at this finer (spatially filtered) scale for SAT, but 

higher for precipitation. Note however that these results may not generalise to other 

regions with different surface characteristics or to finer spatial scales. 

The dominant role of uncertainty in the GCM formulation for UKIR climate 

change is emphasised by describing the UKIR predictions and their (lack of) 

consistency. For SAT, it is unclear which season will experience the greatest warming 

over UKIR, although it seems likely that the southern UK will warm more than the 

northern UK. For precipitation, there is often disagreement on even the sign of the 

projected change over UKIR, except in winter when most GCMs agree that UKIR 

average precipitation will increase by at least 10%. Such disagreements will remain 

until global modelling uncertainties can be narrowed. However, the alternative 

approach of understanding of the mechanisms of regional climate change, and placing 

these in the context of the model’s strengths and weaknesses, will continue to be 

informative (e.g. Carnell and Senior 2002; Rowell and Jones 2005). 

Finally, to address the pragmatic question posed in the introduction, “To what 

extent should resources be invested in multi-model ensembles of RCM integrations, 

rather than further enhancing the ensemble of GCM integrations?”, the results 

presented here suggest that it is indeed worthwhile investing in a range of plausible 

regional models to downscale climate change projections to the scales required by the 

impacts community. However (at least for seasonal time scales and roughly 1000km 

spatial scales), the majority of resources should still be invested in developing and 

running a range of plausible GCMs. These models should of course include additional 

processes not currently incorporated (which will tend to increase uncertainty), and 

should also become more realistic in all other aspects of their physical and dynamical 

representation (which will tend to reduce uncertainty). 
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Appendix A 

 

ACRONYMS USED IN THIS PAPER 

  

CCCma – Canadian Center for Climate Modelling and Analysis 

CCSR/NIES – Center for Climate Research Studies and National Institute for 

Environmental Studies (Japan) 

CSIRO – Commonwealth Scientific and Industrial Research Organisation (Australia) 

DKRZ – Deutsches Klimarechenzentrum (Germany) 

DMI – Danish Meteorological Institute 

ETH – Eldgenossische Technische Hochschule (Switzerland) 

GCM – General Circulation Model 

GFDL – Geophysical Fluid Dynamics Laboratory (USA) 

GKSS – Forschungszentrum Geesthacht GmbH (Germany) 

ICTP – International Centre for Theoretical Physics (Italy) 

IPCC – Intergovernmental Panel for Climate Change 

IPCC-DDC – IPCC Data Distribution Centre 

KNMI – Koninklijk Nederlands Meteorologisch Instituut (Netherlands) 

MO – Met Office (UK) 

MPI – Max-Planck-Institute for Meteorology (Germany) 

NCAR – National Centre for Atmospheric Research (USA) 

PRUDENCE – Prediction of Regional scenarios and Uncertainties for Defining 

EuropeaN Climate change risks and Effects (a European Union project) 

RCM – Regional Climate Model 

SAT – Surface Air Temperature 

SD – Standard Deviation 

SMHI – Swedish Meteorological and Hydrological Institute 

SRES – Special Report on Emissions Scenarios, Nakicenovic et al. (2000) 

UCM – Universidad Complutense de Madrid (Spain) 

UKIR – United Kingdom and Irish Republic 
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Appendix B 

 

SUITABILITY OF IPCC DATA TO ESTIMATE UKIR AVERAGES 

 

The statement that: “UKIR averages for the Met Office and DKRZ/MPI 

GCMs are broadly similar to their downscaled companions from PRUDENCE” is 

supported by the following calculations. First, UKIR average climate anomalies 

(2071-2100 minus 1961-1990) were computed for the two GCMs, as well as for the 

DMI and SMHI RCMs driven by both GCMs (these being the only RCMs driven by 

both GCMs; Table 1). Next, the bias in the GCM anomalies was assessed using 

annual mean data, showing that although the bias of the low resolution data is small, it 

is sufficient that both GCMs fall slightly outside the range of the two RCMs. 

Specifically, for SAT, the annual mean GCM warming is overestimated by the Met 

Office GCM by 0.3°C (compared to the nearest RCM), and underestimated by the 

DKRZ/MPI GCM by 0.2°C. For precipitation, the GCMs overestimate the anomaly of 

the nearest RCM by 3% and 5% for the Met Office and DKRZ/MPI GCMs 

respectively. Nevertheless, the key point here is that these biases are all smaller than 

most of the inter-GCM differences shown in Figures 1 and 2. The similarity of the 

GCM and RCM seasonal means can be summarised by correlating the GCM UKIR 

seasonal anomalies with the averages of the RCM seasonal anomalies. For the Met 

Office GCM, this measure of similarity exceeds 0.99 for both variables, and for the 

DKRZ/MPI GCM they are 0.72 and 0.88, for SAT and precipitation respectively. 

Thus the broad shape of the seasonal cycle of downscaled climate anomalies is 

captured by both GCMs. The lower correlations for the DKRZ/MPI data may indicate 

that the PRUDENCE RCM integrations derive from a different ensemble member of 

the GCM to that made available to the IPCC-DDC. 

 

Appendix C 

 

MECHANISMS FOR SCALE-DEPENDENCY OF RCM UNCERTAINTY AND 

LARGE-SCALE INTERNAL UNCERTAINTY 

  

Four mechanisms may be proposed to explain the scale-dependencies of 

uncertainty shown by comparing Figure 4 with Figures 1 and 2:  
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 (1) If a climate change anomaly field is spatially homogeneous, then its 

response to changes in RCM formulation or to the boundary data is also more likely to 

be spatially homogeneous. In the context of the data analysed in section 4, the 

homogeneity of the mean climate change anomaly field may be estimated as: the 

mean anomaly of the UK difference index divided by the mean anomaly of the UK 

average, both computed using the ‘RCM’ data groups in Figures 1 and 4. For SAT, 

this is on average about 0.25, whereas for precipitation it averages about 0.75 (using 

absolute ratios in each case). This greater homogeneity for SAT may partly explain 

why the ratio of the uncertainties is also lower for SAT than precipitation. 

(2) The spatial dependency of the uncertainty due only to RCM formulation 

will be affected by the interaction of physical processes with the orography and 

coastal topology, and by which processes dominate for a particular variable and 

region. Where the formulation of the most influential parameterisation schemes is less 

well constrained, then interaction with small scale surface features will tend to 

increase uncertainty at small spatial scales. This would be the case for precipitation, 

which is influenced (for example) by the interaction between the modelling of 

precipitation and the UK coastline and orography. 

(3) The uncertainty due to large-scale internal variations could also be 

spatially dependent, whereby small scale anomalies may be particularly sensitive to 

changes in boundary data. Such changes would include the location of synoptic 

systems at the lateral boundaries, as well as large-scale circulation anomalies and heat 

and moisture profile anomalies. 

(4) Chaotic variations within the domain of the RCM will also contribute to 

the spatial-dependency of all sources of uncertainty. However, it seems likely that 

their contribution to uncertainty here is small, because their random nature will have 

little net influence on 30-year seasonal averages, and because the domain of RCMs is 

deliberately chosen to avoid ‘excessive’ internal freedom (e.g. Jones et al. 1995; 

Denis et al. 2002). 

 

 

Notes 

 

1. The two emissions scenarios A2 and B2 should not be regarded as a random 

sample from a population of scenarios, but as two deliberate choices intended to span 
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a part of the full range (one high scenario and one low scenario, with neither being 

extreme). Thus the estimated SD due to this source of uncertainty is more reliable 

than an estimate derived from a two point random sample. Furthermore, the A2-B2 

range of UKIR climate change projections is estimated here with ‘moderate’ 

reliability since the response to each scenario is the mean of data from 5 randomly 

sampled models (not just the response of a single model). 

Nevertheless, the choice of just two scenarios may introduce some bias to the 

SD due to emissions uncertainty, compared to an experimental suite in which all 

scenarios are used. At the global scale, this bias can be estimated using the data shown 

in Figure 9.13(b) of Cubasch et al. (2001), which illustrates the mean temperature 

response to a range of SRES scenarios. Thus, in the latter part of the 21st century, the 

SD of only the A2 and B2 global temperature anomalies is about 15% lower than the 

SD computed using all six illustrative SRES scenarios. If we then accept the first-

order approximation that regional climate change scales linearly with global mean 

temperature (e.g. Mitchell et al. 1999; Mitchell 2003), it is apparent that the SD of 

UKIR climate change due to emissions uncertainty is also underestimated by around 

15% due the particular choice of SRES scenarios. 

 

2. This south-to-north negative gradient of warming anomalies over the UK is 

in the opposite sense to the global zonal mean response. At many other longitudes in 

winter (and at higher latitudes in summer) this gradient is dominated by a reduction in 

the snow-albedo feedback at higher latitudes. However, over the UK there is too little 

snow in the current climate for this to be important, and so instead the gradient of 

warming is determined by the shape of the land mass and the latitudes over which it is 

close to continental Europe. 
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Tables 
 
Table 1. Ensemble size of RCM experiments used in this study. The first column 
shows the emissions scenario used, the second column the GCM used to drive the 
RCM, and remaining columns list the RCMs. ‘AM3H’ and ‘AM3P’ are the Met 
Office atmospheric GCMs HadAM3H and HadAM3P, respectively, both driven by 
the coupled GCM HadCM3. ‘ECH4’ is the DKRZ/MPI coupled GCM 
ECHAM4/OPYC. Other acronyms are defined in Appendix A. 
 

Scenario   GCM DMI ETH GKSS ICTP KNMI   MO  MPI SMHI UCM 

Cntl AM3H    3    1    1    1    1    1    1    1    l 
Cntl AM3P         3 
Cntl ECH4    1          1 

A2 AM3H    3    1    1    1    1    1    1    1    1 
A2 AM3P         3 
A2 ECH4    1          1 

B2 AM3H           1    1 
B2 AM3P         1 
B2 ECH4    1          1 

 
 
Table 2. Summary of the four sources of uncertainty. 

 
 

Abbreviation Source of Uncertainty  Data used to Estimate this Uncertainty 
 
 

RCM  RCM Formulation  9 different RCMs forced by the common 
      boundary data of a single GCM  
      (PRUDENCE database) 
 
Internal Large-Scale Internal  Two 3-member RCM ensembles forced 
  Climate Variations  by boundary data from GCM ensembles 
      using the SRES A2 scenario 
       (PRUDENCE database) 
 
Emissions Projected Rates of  5 different RCMs each forced by the  
  Anthropogenic Emissions SRES A2 and B2 scenarios 
      (PRUDENCE database) 
 
GCM  GCM Formulation  7 GCMs forced by the SRES A2 
      scenario 
      (IPCC database) 
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Figure 1. Projected climate change anomalies for seasonal mean surface air 
temperature averaged over UKIR, computed as the time-mean differences between 
2071-2100 and 1961-1990. Four groups of points are shown in each panel, the spread 
of which indicates the uncertainty due to a specified source: ‘RCM’ is RCM 
formulation, ‘Internal’ is large-scale internal anomalies of the coupled climate system, 
‘Emissions’ is the emissions scenario, and ‘GCM’ is the GCM formulation. Note that 
‘Internal’ contains two groups of points (at different locations on the x-axis) 
representing ensembles from different RCMs. See section 2 of the text for further 
detail. ‘SD’ is the standard deviation of each group of anomalies, which in the case of 
‘Internal’ is computed from the average of the two intra-ensemble variances. The 
arrow at the right-hand side of each panel indicates the HadCM3 anomaly. 
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Figure 2. As Figure 1, but for seasonal mean precipitation anomalies. UKIR average 
anomalies are computed in units of mm/day and then converted to a percentage of the 
appropriate model’s 1961-1990 control climate. 
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Figure 3. As Figure 1, but for annual mean precipitation anomalies. UKIR average 
anomalies are computed in units of mm/day and then converted to a percentage of the 
appropriate model’s 1961-1990 control climate. 
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Figure 4. Projected north-minus-south difference of seasonal mean climate change 
anomalies for the UK, under the A2 scenario, computed as time-mean differences 
between 2071-2100 and 1961-1990. See section 4 of the text for further detail. (a) 
Surface air temperature, and (b) precipitation computed as the difference of 
percentage anomalies. For each season, two groups of points are shown, the spread of 
which indicates the uncertainty due to a specified source: the large circles are RCM 
formulation, and the small circles are large-scale internal anomalies of the coupled 
climate system. Note that the latter contains two groups of points (at different 
locations on the x-axis) representing ensembles with different RCMs. ‘SD’ is the 
standard deviation of each group of anomalies, which in the case of the smaller circles 
is computed from the average of the two intra-ensemble variances.  
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Figure 5. Projected climate change anomalies of June–Aug mean precipitation over 
the UKIR under the A2 scenario. Computed as the time-mean difference 2071-2100 
minus 1961-1990, as a percentage of the 1961-1990 mean. Three groups of data are 
shown: (1) The upper 9 panels show different RCMs driven by the same GCM 
(HadCM3 via HadAM3H); (2) the 4th row of panels are anomalies of the Met Office 
RCM driven by different ensemble members of the GCM (in this case, HadCM3 via 
HadAM3P); (3) the lowest 3 panels are anomalies from the DMI RCM driven by 
different ensemble members of the GCM. Within each group, the panels are ordered 
(from left-to-right, then top-to-bottom) according to the difference between their 
anomalies in the northern and southern UK (computed following section 4). 
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