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1 Aims

This note presents the recommendations for preliminary, exploratory analy-
ses of PRUDENCE model runs. The aim of the methods described below is
to summarise important features of the distributions of meteorological vari-
ables so that comparisons may be made between different runs of the same
model and between runs of different models. The focus is on summarising
the overall shape of the body and the tails of distributions, which admits
the investigation of whether or not the extremes are changing in ways that
may be explained by overall changes in the distribution, such as a shift in
location. The methods are based on calculating a few sample percentiles,
which are easy to compute, provide a good description of the whole distri-
bution, and are statistically robust. See Lanzante (1996) for many examples
illustrating the benefits of using robust statistics. No attempt is made at
this stage to assess the significance of distributional changes, nor to charac-
terise the temporal structure within model runs (Stephenson et al., 2002).
Recommendations for the examination of these issues will follow in future
communications.

In Section 2 we list the common diagnostics used to summarise distribu-
tions of temperature, wind speed, and precipitation variables. Summaries for
other variables may be defined similarly. Example analyses in which we apply
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our methods to single series of measurements of each variable are presented
in Section 3. The data used in these examples are available on the web at
www.met.rdg.ac.uk/∼sws02caf/prudence.html for use as a testing ground for
computer code. A brief example of the methods applied to an entire field
using output from two runs of the regional climate model HadRM3 is given in
Section 4. We conclude with a summary of the recommendations in Section
5.

2 Summarising the distributions

Let X represent a variable to be measured at a single location in the control
run, and let X ′ represent the same variable in the perturbed run. Let X(1) <
· · · < X(n) be the order statistics from the control run, that is the observations
sorted into ascending order, and let X ′

(1) < · · · < X ′
(n) be the order statistics

for the perturbed run. For a percentage, p, the p-percentiles are defined to
be

Xp = X([(p/100)n+0.5]) and X ′
p = X ′

([(p/100)n+0.5]), (1)

where [z] denotes the integer part of z. Next we define three summary
statistics of the distributions of X and X ′: the median (denoted mX and
m′

X) which measures central location, the inter-quartile range (sX and s′X)
which measures scale, and the quartile skewness statistic (aX and a′X) which
measures asymmetry. These measures are defined in terms of just three,
central percentiles:

mX = X50,

sX = X75 −X25, (2)

aX = (X75 − 2X50 +X25)/sX ,

and similarly form′
X , s′X and a′X . For reference, a Gaussian (normal) random

variable with mean µ and standard deviation σ would have mX = µ, sX =
1.35σ, and aX = 0.

A selection of percentiles (Equation 1) and the summary statistics (Equa-
tion 2) form the basis of the common diagnostics. Slightly different sets of
diagnostics are used for the temperature, wind speed and precipitation fields,
which are discussed in the following paragraphs; a list of the common diag-
nostics appears in Table 1.

Temperature For each run, compute nine percentiles, Xp and X ′
p with

p = 1, 5, 10, 25, 50, 75, 90, 95, 99, and the three summary statistics.
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Wind speed As for temperature, but omit the three small percentiles,
with p = 1, 5, 10, since low wind speeds tend to have no major impact.

Precipitation It is important to distinguish between wet and dry days: a
day is defined to be wet if more than 1mm of precipitation is recorded. Sum-
marise the distribution of the precipitation recorded on wet days by the six
percentiles and three summary statistics used for wind speeds. In addition,
record the proportions, Pw and P ′w, of wet days, and the precipitation means,
P̄ and P̄ ′, over all days (both wet and dry).

Temperature Wind Speed Wet Days
T1 − −

Small Percentiles T5 − −
T10 − −
T25 W25 P25

Central Percentiles T50 W50 P50

T75 W75 P75

T90 W90 P90

Large Percentiles T95 W95 P95

T99 W99 P99

Location mT mW mP

Scale sT sW sP

Asymmetry aT aW aP

Table 1: Common diagnostics recommended for PRUDENCE. Two, addi-
tional, precipitation statistics are computed: the proportion of wet days, Pw,
and the mean precipitation, P̄ .

The values computed for the common diagnostics should be plotted for
each experiment to give an idea of the distribution of each variable over the
field. The differences between the values from the two experiments should
also be plotted in order to give an impression of how each distribution has
changed. In the next section, we show how to investigate whether or not these
changes can be explained in terms of shifts in location, scale, and asymmetry.
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3 Explaining changes in distributions

3.1 Temperature

The change in the distribution of temperature may be visualised by plotting

∆Tp = T ′p − Tp (3)

for each value of p. The changes in the percentiles after adjusting for the
change in location may also be examined by plotting

(

T ′p −m′
T

)

− (Tp −mT ) = T ′p − {m
′
T + (Tp −mT )} . (4)

Note that this quantity might also be written as ∆Tp−∆mT , where ∆mT =
m′

T − mT . Finally, the changes in the percentiles after adjusting for the
changes in both location and scale are described by

s′T

(

T ′p −m′
T

s′T
−
Tp −mT

sT

)

= T ′p −

{

m′
T + s′T

(

Tp −mT

sT

)}

, (5)

which may also be written ∆Tp −∆mT −∆sT (Tp −mT )/sT , where ∆sT =
s′T − sT .

We illustrate the technique with data taken from two decades of the
daily Central England Temperature series. The first decade comprises DJF
(1 December to 28 February) for 1960/61 to 1969/70; the second decade
comprises DJF for 1970/71 to 1979/80. The data (in degrees Celsius) are
stored in the file t.data. The values of the common diagnostics are exhibited
in Table 2 and Figure 1 shows the quantities (3) – (5).

Each of the percentiles increases from the first time period to the second,
indicating a general warming. Moreover, the changes are larger in the lower
tail, at colder temperatures, which explains the reduction in scale. Figure 1
shows that the changes in the body of the distribution are well described by
the change in location and scale. However, the changes in the tails of the
distribution appear to be of a different nature; they might be characterised
by a change in the steepness, or kurtosis, of the distribution.

See Section 4 for an illustration using HadRM3 gridded temperature data.

3.2 Wind speed

It is inappropriate to talk about a shift in location of non-negative variables
such as wind speed and precipitation since this can result in a range encom-
passing negative values. Instead, we consider changes in scale and asymmetry
by shifting the location and scale after transforming to a logarithmic scale.
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Temperature Wind Speed Wet Days
T T ′ W W ′ P P ′

Decade 1960s 1970s 1980s 1990s 1960s 1970s
-4.5 -3.4 − − − −

Small Percentiles -2.3 -1.0 − − − −
-1.0 0.3 − − − −
1.0 2.5 2.6 2.5 2.3 2.1

Central Percentiles 3.6 4.7 3.8 3.5 4.1 3.6
6.1 6.8 5.4 5.0 6.9 6.2
7.8 8.4 7.1 6.6 9.9 10.9

Large Percentiles 8.8 9.3 8.6 7.6 13.0 14.2
10.0 10.7 10.6 9.5 19.0 18.4

Location 3.60 4.70 3.80 3.50 4.10 3.60
Scale 5.10 4.30 2.80 2.50 4.60 4.10
Asymmetry -0.02 -0.02 0.14 0.20 0.22 0.27

Table 2: Estimates of the common diagnostics in Table 1 for the simulated
data. The additional precipitation statistics are Pw = 0.30 and P ′w = 0.34,
P̄ = 1.67 and P̄ ′ = 1.78.

As long as the lowest percentile considered (p = 25 for these variables) is
non-zero, taking logarithms does not pose a problem.

For wind speed, let W̃p = logWp and denote the location, scale and
asymmetry measures of the transformed variable by m̃W , s̃W and ãW . Define
similar transformed statistics for W ′

p. We plot three quantities for each value
of p: the change in percentile,

exp
(

W̃ ′
p

)

− exp
(

W̃p

)

= W ′
p −Wp; (6)

the change in percentile adjusted for the change in scale,

exp
(

W̃ ′
p

)

− exp
{

m̃′
W +

(

W̃p − m̃W

)}

= W ′
p −m′

W

(

Wp

mW

)

; (7)

and the change in percentile adjusted for the change in both scale and asym-
metry,

exp
(

W̃ ′
p

)

−exp

{

m̃′
W + s̃′W

(

W̃p − m̃W

s̃W

)}

= W ′
p−m

′
W

(

Wp

mW

)s̃′

W
/s̃W

. (8)

We illustrate the technique with two decades of daily, mean, 10m wind-
speeds recorded at Bourges in France. The first decade comprises DJF
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Figure 1: a) Differences between temperature percentiles, T ′p − Tp, b) after
adjusting for location, T ′p − {m

′
T + (Tp − mT )}, and c) after adjusting for

location and scale, T ′p − {m
′
T + s′T (Tp −mT )/sT}.

for 1980/81 to 1989/90; the second decade comprises DJF for 1990/91 to
1999/00. The data (in metres per second) are stored in the file w.data. The
values of the common diagnostics are exhibited in Table 2 and Figure 2 shows
the quantities (6) – (8).

Wind speeds decrease in general, with greater changes evident at higher
percentiles. Figure 2 shows that the change is reasonably well explained just
by the reduction in scale.

3.3 Precipitation

For wet days, we must ensure that the range of the variables remains as
(1,∞). This is accomplished by modifying the logarithmic transformation
to P̃p = log(Pp − 1). Again, we plot three quantities for each value of p: the
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Figure 2: a) Differences between wind speed percentiles, W ′
p −Wp, b) after

adjusting for location, W ′
p−m

′
W (Wp/mW ), and c) after adjusting for location

and scale, W ′
p −m′

W (Wp/mW )s̃
′

W
/s̃W .

change in percentile,
(

1 + eP̃ ′

p

)

−
(

1 + eP̃p

)

=
(

P ′p − 1
)

− (Pp − 1) ; (9)

the change in percentile adjusted for the change in scale,

(

1 + eP̃ ′

p

)

−
{

1 + em̃′

P
+(P̃p−m̃P )

}

=
(

P ′p − 1
)

− (m′
P − 1)

(

Pp − 1

mP − 1

)

; (10)

and the change in percentile adjusted for the change in both scale and asym-
metry,

(

1 + eP̃ ′

p

)

−
{

1 + em̃′

P
+s̃′

P
(P̃p−m̃P )/s̃P

}

=
(

P ′p − 1
)

−(m′
P − 1)

(

Pp − 1

mP − 1

)s̃′

P
/s̃P

.

(11)
We illustrate the technique with two decades of the Oxford precipitation

series from the European Climate Assessment datasets (Klein Tank et al.,
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Figure 3: a) Differences between wet-day precipitation percentiles, (P ′p−1)−
(Pp − 1), b) after adjusting for scale, (P ′p − 1)− (m′

P − 1)(Pp − 1)/(mP − 1),
and c) after adjusting for scale and skewness, (P ′p − 1) − (m′

P − 1){(Pp −

1)/(mP − 1)}s̃′

P
/s̃P .

2002). The two decades cover the same periods as the temperature data in
Section 3.1. The data (in millimetres) are stored in the file p.data. The values
of the common diagnostics are exhibited in Table 2 and Figure 3 shows the
quantities (9) – (11).

The proportion of wet days increases slightly, from 0.30 to 0.34, which
contributes to the increase in overall mean rainfall from 1.67mm to 1.78mm.
The distribution of wet-day precipitation behaves somewhat differently, how-
ever. The body of the distribution moves towards smaller values, a change
that is well described by the reduction in scale, but the upper tail exhibits
a general increase towards larger values. These contrasting features explain
the increase in asymmetry, towards a more positively skewed distribution.
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4 Field example

Figures 4 – 6 show plots of some of the quantities mentioned earlier in this
note for a control run and a perturbed (2× CO2) run of the Hadley Centre
regional climate model HadRM3 in winter (DJF). The plots are created by
performing the previously documented calculations at each grid point.

Figure 5 shows the spatial distribution of the warming in median tem-
peratures, with a positive trend over land from west to east. There is also a
reduction in scale almost everywhere. The changes in asymmetry have lower
spatial coherence and are possibly statistically insignificant.

The change in the 10th percentile (cold temperatures) is evident in Figure
6. Again, there is a warming everywhere with an increasing trend west to
east. Some change remains in Eastern Europe after adjusting for the change
in location; more is accounted for by the additional adjustment for scale; the
remainder might be explained by changes in other features, such as shape.

5 Summary of recommendations

The approach is summarised by the following checklist for each variable X:

1. Compute the percentiles, Xp, for each value of p and for each experi-
ment.

2. Compute the summary statistics, mX , sX , and aX for each experiment.

3. Plot the changes in the summary statistics.

4. For each value of p, plot the change in percentile, as well as the change
after adjusting for location and scale, or scale and asymmetry.

These are exploratory tools, and just a few of the plots may be sufficient
to summarise the changes in distribution and highlight the most interesting
features: information that will be invaluable for PRUDENCE.

Finally, note that it is misleading to attempt to quantify the fraction of
the change in a particular percentile attributable to a change in, for example,
location or scale. The reason for this may be understood by looking at the
99th percentile in Figure 3. After adjusting for scale, the change in this
percentile switches sign and increases in magnitude: the change in percentile
is not guaranteed to decrease.
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Figure 4: Summary statistics for 2m temperature from the control run: a)
mT , b) sT , and c) aT .
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Figure 5: Changes in summary statistics for 2m temperature: a) ∆mT =
m′

T −mT , b) ∆sT = s′T − sT , and c) 10∆aT = 10(a′T − aT ).
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Figure 6: Changes in the 10th percentile of 2m temperature: a) T ′10−T10, b)
T ′10 − {m

′
T + (T10 −mT )}, and c) T ′10 − {m

′
T + s′T (T10 −mT )/sT}.
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