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Abstract

Probability distributions of daily maximum and mimim temperatures in a suite of ten
RCMs are investigated for i) biases compared t@mofagions in the present day climate
and ii) climate change signals compared to the lsited present day climate. The
simulated inter-model differences and climate clesrgye also compared to the observed
natural variability as reflected in some very Ildngtrumental records. All models have
been forced with driving conditions from the samebgl model and run for both a
control period and a future scenario period follogvithe A2 emission scenario from
IPCC. We find that the bias in th& Bercentile of daily minimum temperatures in winter
and at the 98 percentile of daily maximum temperature during menis smaller than
+3°C (+5°C) when averaged over most (all) European sub-nsgidhe simulated
changes in extreme temperatures both in summemvartdr are larger than changes in
the median for large areas. Differences betweenetsaate larger for the extremes than
for mean temperatures. A comparison with historitzth shows that the spread in model
predicted changes in extreme temperatures is léngarthe natural variability during the

last centuries.
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1. Introduction

Regional climate models (RCMs) have the potentigbrovide detailed information not
only on mean conditions but also on extremes (Bemigt al., 2006). Given quasi-
observed lateral boundary conditions, i.e. fromnadgsis experiments, RCMs have been
shown to realistically simulate variability of marglimate parameters on different
temporal scales (Giorgi et al.,, 2001). When the RCMe forced with boundary
conditions from GCMs, however, these boundary dooms often introduce systematic
biases in the simulation of the present climategido et al., 1998). Some of the
systematic biases are amplified when looking intaranextreme events like maximum
and minimum temperatures (e.g. Moberg and Jonéj2though this is not always the
case, e.g. for percentage errors in precipitatidremes (Buonomo et al., 2006). In the
present study, variability and scenario changesdaily maximum and minimum
temperatures in a suite of ten RCMs taking parth@ European project PRUDENCE
(Christensen et al., 2006) are investigated. TheMiRGwvere driven by boundary

conditions from the same GCM scenario.

Changes in extreme temperatures over long timessbedve been described by Yan et al.
(2002) using data from ten stations in Europe amih& They conclude that cold
extremes have been decreasing and warm extrenreasig during recent decades, but
also that there have been earlier changes in #dsemes. In an analysis of more than
100 European station records for the second hathef2d" century, Klein Tank and
Kénnen (2003) arrived at a similar conclusion, nigntieat the cold extremes have been

decreasing and the warm extremes increasing dthimdast quarter of the 2@entury.



Here we relate the simulated changes not just tdemand inter-model variability but

also to the natural variability as reflected in govery long instrumental records.

In a previous study, Kjellstrém (2004) investigattaily variability of daily mean 2m-
temperature and its changes under changed climatiditions. Here, we look into daily
maximum and minimum 2m-temperatures in climate fatans over Europe, including
their upper and lower percentiles relating to theuorence of heatwaves and cold spells,
respectively. Changes of these parameters could bés affected by changes in
interannual climate variability. It has been suggeghat in a future climate the summer
interannual variability of surface temperatures migicrease as an effect of changes
related to land-surface processes (Schar et @4)2Most of the models used in the
PRUDENCE consortium show indeed some increase terannual temperature
variability during the summer season, but therecaresiderable inter-model differences
regarding the amplitude, geographical location a®ésonal timing of the effect

(Lenderink et al. 2006; Vidale et al. 2006).

2. Methods and data

2.1. MODELS

We use results from ten RCMs, nine from PRUDENCH an additional one run by

MetNo (HIRHAM-NO, Hanssen-Bauer et al., 2003), 3aeob et al. (2006) and Déqué et
al. (2006) for details. The lateral boundary caodi for all RCMs were provided by the

GCM HadAM3H (see Buonomo et al., 2006 for detadsd the lower (sea-surface)

boundary condition for this were taken from obsgores and HadCM3 (see Rowell 2005



for details). All models have been run for a cohperiod (CTRL), 1961-1990, and a
future scenario period (A2), 2071-2100, followirge tA2 emission scenario from IPCC
(Nakicenovi et al., 2000). We study daily maximum,gl) and minimum (Zmin)
surface air temperatures as well as the daily ne@aperature (7). The Tmaxand Bmin
variables are defined as the maximum and minimusspectively, of all time-step
calculations for a day, which is defined as theetibetween 00 and 00 UTC. The daily
mean is simply the average over these time-steps. [€ngth of the time-steps is
generally about 5 minutes in the models exceptACRO (12 minutes) and RCAO (36

minutes).

2.2. OBSERVATIONAL STATION DATA

We compare model data to observational data framBiropean Climate Assessment
(ECA; Klein Tank et al., 2002). This dataset cowssisf data from about 200 stations
covering much of Europe. Here, we look at the tpeeiod 1961-1990. We require that
station series should have data for at least 90%heflays in that time period, leaving

147 stations with a geographical distribution a®ghin Figure 1.

In addition to the ECA dataset we also use longitdata from seven stations from the
IMPROVE dataset (Camuffo and Jones, 2002) thatats® shown in Figure 1. These
stations report temperature for the last few céedureaching back into the early
instrumental era. The stations are: Cadiz/San Remasouthern Spain 1786-2000;
Padova, northern Italy 1725-1997; Milan, northealyl 1763-1998; Central Belgium, a

composite covering 1767-1998 based on several yestétions; Uppsala, central



Sweden 1722-2000; Stockholm, central Sweden 1798;18nd St Petersburg, Russia
1743-1996. The dataset contains homogenized andityquantrolled daily mean,
maximum and minimum temperatures (for Stockholmpd#pa and St Petersburg only
daily mean temperature is available). These long-teecords are used here to put the
model simulated climate change signals in the metsge of longer-term climate

variability.

2.3. LINKING MODEL GRIDCELL DATA TO STATION DATA

For each ECA station, the covering gridcell of eanbdel was used for the bias

assessment. Point measurements, however, may iotggarable to the size of a model
grid box, which is about 50x50 kilometers in theN®Cstudied here as the models do not
simulate subgrid-scale variability. There is a jgatar problem in coastal regions where
observational stations are influenced both by land sea. The model grid box covering
the coastal station could be either land or seamidipg on the land-sea mask in the
model. We have therefore excluded all combinatiohsoastal stations and model sea
grid boxes from our comparisons. For models withctional land/sea gridboxes we

excluded gridcells with more than 50% sea.

Regions of complex topography also give rise taous problems. Differences between
model and station altitude have been accounteddiog a lapse rate of 0.0065K/m. This
average lapse rate does not account for other Idesiations or specific weather
conditions. As we are focusing on comparisons iofiaological differences and not per-

observation differences, this simplification is geaable with the exception of where



there is a large altitudinal difference betweengta¢ion and model gridcell. We therefore
exclude model gridcells where this difference edse@€000m. Further, high altitude
stations, above 2000m, have been excluded frontangparisons since these stations
often tend to sample free tropospheric conditianare strongly affected by snow cover
and glaciers. These selection criteria result meswariations of the number of models
that are used in the ensemble averages. Thusalecfiterion for including any station is

that at least 70% of the models are included iretiemble average for that station.

In the assessment of model behaviour we focus enrtdian and inter-quartile range
(IQR) as robust measures of the model ensembleagedtypical) bias and inter-model
variation (see Ferro et al. 2005). In this way wei@ undue influence from any one
deviating model. The spatial patterns of the medmaps and corresponding mean maps
(not shown) are however very similar. This is alse case for the IQR and standard
deviation maps (not shown), although the IQR mdymsvsa wider inter-model variation
compared to the corresponding standard deviatiopsnibo further reduce the possible
influence from station specific local conditions axerage, again using medians, both the
model bias and simulated climate change on a ragimasis. The regions are those used
by Déqué et al. (2006) and Jacob et al. (2006} witslight relaxation of the region
boundaries (Figure 1) to allow the inclusion ofearECA stations that otherwise were
just outside any region. For the British Isles dfdnce regions there are only few
stations available, and in the Mediterranean regtations are located along the coast,

apart from the interior of the Iberian Peninsula.



We do not fit any probability density function teetobserved and simulated temperature
distributions, but rather choose to present theulsitad empirical distributions in terms
of selected percentiles. We have analyzed the 1105,25, 50, 75, 90, 95 and 99
percentiles but choose to focus our presentatiocooditions at the wintertime (DJFY'5
and summertime (JJA) 95ercentiles. In this way we can describe featagsjust of
the most extreme situations, but more generallgveints occurring on average 4-5 days

per season (the three-month periods DJF and JJA).

3. Results

3.1. PRESENT-DAY CLIMATE, DAILY MAXIMUM TEMPERATUREIN SUMMER

In summer the 95 percentiles for simulated,J., are highest in southern Europe with
maximum temperatures of about or aboveCA(Fig 3a). The general spatial patterns are
reproduced by the RCMs though there are some ldiferences, locally up to £G
(Figure 2a). HadRM3H has relatively small deviasioinom its driving model, of a
similar level to those in RCAO and smaller than etieer RCMs, probably related to the
fact that it shares common physical parameteriaati@he ensemble median of thé"95
percentile of Fmax during JJA underestimates the highest temperataresrthern and
northwestern Europe and overestimates the high @eatyres in southern and eastern
Europe compared to ECA (Figure 4a and Table 1).nkast stations except in the White
Sea region, the ensemble median bias is witiBitC. There is, however, a rather large
spread among the different models as summarizecedch region in Table 1. The
negative bias over the British Isles and Scanda&vevident in almost all models. The

underestimation of maximum temperatures in RCAO marthernmost Europe is



discussed by Raisanen et al. (2003). They fountthiunderestimation is related to too
cloudy and rainy conditions in this simulation. & reanalysis-driven experiment,
however, Jones et al. (2004) find that RCA2 (thmaspheric component of RCAO)
simulates both cloud cover and precipitation inseleagreement to observations in
northern Europe, suggesting that the driving glatsih from HadAM3H contributes to
the too low maximum temperatures, an effect thatccmfluence all RCMs. Further, the
95" percentile of Fmax from the reanalysis-driven experiment by Jones.gnot shown)

is generally 1-2ZC warmer in Scandinavia and the British Isles tta of the RCAO run
driven by HadAM3H used in this study. This suppotite idea that the driving
boundaries contributes to the underestimation ofimiam temperatures. Nevertheless,
Lenderink et al. (2006) show that the interannuainthly temperature variability in
RACMOZ2 driven by re-analysis boundary conditionscligse to the variability in the
HadAM3H driven run. Further inspection of the réswalf these two runs with RACMO?2,
revealed no significant differences in the simuai®max 95" percentile over Europe

except for the southeastern part.

In the Iberian Peninsula, the Mediterranean regind eastern Europe the tendency is
reversed with an overestimation of thenJ 95" percentiles in most models. This is
particularly the case for the HadRM3H model thaalso (much) too warm in the three
intermediate regions; France, Mid-Europe and thpsAlThese regions are interesting
since some models show a warm bias (HadRM3H, Reg@mR RCAO) while some
show a cold bias (CLM, PROMES, HIRHAM-NO and RACM©OZhe warm bias in

RCAO may partly be related to the relatively snsdtirage capacity of the soils in that



model (van den Hurk et al., 2004) and, partly ® ¢kear sky portion of the RCA2 solar
radiation code that transmits too much radiationthte surface (Jones et al., 2004).
Furthermore, Moberg and Jones (2004) noted thaarmwbias in southern Europe in
HadRM3P (which is very similar to HadRM3H) is assted to low or zero simulated
soil moisture. Lenderink et al. (2006) investigatierannual variability of monthly mean
temperature in the PRUDENCE simulations. They aatelthat on the one hand soil
drying and evaporation, and on the other hand damdl their radiative properties, are
major issues in determining the interannual valigbiof temperature in these
simulations. They find that CLM and PROMES haverarg cloud (radiative) control
and that RACMO2 has a strong evaporative controltemnperature variability. It is
therefore expected that these models are colder ttira others in these intermediate
regions. Our results indicate that their findingsowa interannual monthly mean
temperature variability can be extended also to rtiee extreme daily temperature
conditions discussed in the present study. Ittsr@sting to note that the two versions of
HIRHAM show very different patterns of bias magditu We have not scrutinized the
two simulations in detail. With the exception oétHadRM3H model, all models have an
overall median bias withia2°C. This is an interesting result as previously aswoted
that HadRM3H follows most closely its driving moddlhus the other models are
deviating more from their driving model but are slating results which are closer to
observation. It would appear that there is a béf@im having the same formulation of
the physics in the RCM as in the GCM to improvesistency. However, it still leaves

the question open as to whether, in this case,RG& concerned provides a more
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realistic projection of regional climate changeegivts larger biases whilst simulating the

current climate.

The ensemble median bias across models and stétienthe median of all the models’
biases) is 0. The overall spatial pattern of biases in th& pBrcentile for Fmax is
similar to that of the median bias inmkx (N0t shown). A difference, however, is that the
warm bias in the southeast is stronger and thaextténds further to the north in eastern
Europe/Russia in the §5ercentile. The fact that model biases affectdgygrts of the
probability distribution is shown in Figure 5a wheegional biases are shown for nine
different percentiles. In eastern Europe the pasibias for high percentiles is large,
whereas it is small or negative for low percentilesseveral regions, the spread among
the RCMs is larger at the 95nd 99" percentile as compared to the median and low
percentiles. The cold bias for PROMES and CLM imeaegions, as noticed at thé"95
percentile, is even more pronounced at the lowspezature percentiles. HadRM3H
shows a very pronounced increase in bias for thkdnipercentiles in most regions. The
latter is most likely related to the drying outsaiils (see Lenderink et al., 2006; Vidale et

al. 2006)

3.2. PRESENT-DAY CLIMATE, DAILY MINIMUM TEMPERATUREIN WINTER

The 8" percentiles for simulatedyfin in winter are lowest in eastern and northern Eeirop
with temperatures well below -3D over parts of Russia in most models (Figure ). |
the western maritime climate the RCMs give fercentiles of minimum temperatures

close to 6C. The main features of the geographical distrisutf the §' percentiles of
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minimum temperatures are similar to the HadAM3Huation (Figure 2c¢) though again
there are local differences of up t0°@0 As in summer, HadRM3H deviates little from
its global driving model and is in this case clogkan the other RCMs.. Cold
temperatures in winter are often associated wittasons with snow-covered ground and
clear skies. A look at the maximum snow depth m tfodels reveals some differences
(not shown). In some models, most notably RegCM2RE!, RCAO, and REMO, snow
is very rare in low-lying parts of the British IsleWestern France, Spain and Italy, while
in others, like CLM, PROMES, RACMO2 and HIRHAM-DKiew occurs more often in
these regions. Another process that strongly affebe occurrence of cold winter
temperatures is the freezing of soil moisture (Miteet al., 1999). There are substantial
model-to-model differences in the representationtto§ process. In Figure 4b we
compare the ensemble median of the DJF fercentiles of Tnin to the ECA
observations. The pattern of biases is similahtd tn summer, though reversed in the
sense that the bias in western and northern Eusap@w positive and the average bias in
southeast is negative. Typical median biases fat stations are in the rang8°C, apart

from generally higher values in Scandinavia.

As in summer for the 95 percentile of Fmas the inter-model variability in the™
percentile for Fmin in winter is large (Table 2), particularly for maooastal stations (not
shown). The RCMs generally agree on the sign obths in most regions except for the
Alps, Mediterranean region and Iberian Peninsutatahbly, in the Alps CLM and RCAO
show a marked opposite (i.e. negative) sign ofdsa®mpared to the other models, and

in the Iberian Peninsula, CLM and HadRM3H show gatiee bias while the other
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models have positive biases. In the Mediterraneaheastern Europe the bias pattern is
more diverse: with PROMES and RACMO2 showing litilas in both regions; CHRM,
HIRHAM-NO, RCAO and REMO having a positive biastire Mediterranean region and
negative bias in eastern Europe; and CLM, HIRHAM;DHadRM3H and RegCM
having a negative bias in both regions. For RCAf®,tbo mild climate in the north can
be explained by the circulation being too stronglyjuenced by westerly winds during
winter (cf. Raisanen et al., 2003). Since the fuyatonditions from the global model are
the same in all experiments this would imply thamnse fraction of these warm biases is
an effect of the boundary conditions given by theidg global model. Van Ulden et al.
(2006) show that the HadAM3H simulation is charazésl by a too strong westerly flow
in winter. They estimate that the bias in circaatinduces a positive mean temperature
bias of 1.5C in central Europe. In agreement, using the RACM@®2iel central Europe
and Southern Scandinavia are about@ varmer in the presently discussed HadAM3H
driven simulation compared to a simulation emplgyithe ERA40 re-analysis for
boundary conditions (van Ulden et al., 2006). Tifeeent sizes of biases in different
models show that the RCMs have different sensjtitvd the boundary conditions.
Compared to biases in mean conditions the biastif" percentile are larger in most
of the regions (Fig 5b). Again, the spread amonglei®is largest at the more extreme
part of the low tail of the distribution with diffences at the®1percentile ranging up to

about 16C in some areas.

3.3. FUTURE CLIMATE CHANGE SCENARIO
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The projected warming in summer is most dramaticeintral and southern Europe in the
RCMs. The model range of the change in mean teryerdor JJA (not shown) is
between 4 and at leasi(7in the Iberian Peninsula, France, the Meditemanegion and

in the Alps (Déqué et al., 2006). Inkxthe mean signal (not shown) is even larger and
for the 98" percentile of Fnaxit reaches 1% in a few areas in some models (Figure 6).
Figure 6 reveals large differences between thedifft RCMs. Both the overall pattern
and the size of the changes differ notably. A comrfieature is that all models simulate a
generally larger increase i lax on warm days in southern Europe than in the north,
with the exception of HadRM3H. However, it is agameresting to note that for the
other RCMs this is a deviation from the driving GCMe simulated climate change
signal in HadRM3H is very similar to the resultdabed with HadAM3H. Most RCMs
show a band-like structure of most pronounced wagnthat extends from France
eastwards over the continent, although this stractst more or less displaced to the
south. The differences between the ten RCMs arnealiytas large as the differences
between the four different realizations of climat@nge with one of the RCMs (RCAQO)
driven by two different emission scenarios (A2 &8) and lateral boundary conditions
from two GCMs (Kjellstrom, 2004). Resulting differees between the RCM with the
lowest (CLM) and highest (HadRM3H),1.x changes are about M in large parts of
Europe. Just as for the bias in the control clinsataulations there is a clear tendency for
the climate change signal in summeg to be larger for the more extreme situations
(95" and 99' percentiles) than in the median (Figure 7a). Ftbencurrent analysis it is
not obvious whether this is due to variability iases on the interannual or daily range,

or a combination of the two. The spread among thdets is larger in the upper tail of
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the distribution compared to the lower tail for afigions. The largest inter-model
differences occur in central Europe. This is cdesiswith the discussion on the role of

parameterized physical processes in section 3.1.

In winter all models show substantial increasesi@an temperatures over eastern Europe
and Scandinavia. Inzkin the mean warming signal is aboVi4n large parts of eastern
Europe and Russia (Déqué et al. 2006). Just likeummer the change in the more
extreme conditions is larger compared to the chamdglee average. The changes for the
5" percentile are shown in Figure 6. The largestediffices compared to the control
climate are very large, up to I5in some locations in REMO and RCAO. At the same
time it can be seen that the spread between theelsiad again very large with
differences between models of up to°@0 As in summer, HadRM3H is close to
HadAM3H The considerable spread between the RCMsbaut twice as large as the
spread between the four experiments with one o@Rorced by different emission
scenarios and different lateral boundary conditionkjellstrom (2004). Common to all
the models is a connection between the region airman climate change signal and the
withdrawal of the snow cover in the models. Thiargection indicates the importance of
the feedback processes involving temperature, ssower and albedo on the temperature
climate in these models. Decreasing snow covesléatbwer albedo which allows more
shortwave radiation to be absorbed at the groundo,Athe reduced snow cover
facilitates heat exchange between the relativelymaoil and the atmosphere. Both these
effects lead to higher temperatures which in twnta further reduce the snow cover.

The importance of these feedback processes istrdtes by the fact (not shown
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graphically) that the areas of maximum changegénsf' percentile of i, are, in most

models, covered with snow during more than 50%hef time in CTRL. In A2 these
regions generally have snow in less than 25% oftithe. Again, the climate change
signal is stronger and the spread between the mddejer near the lower tail of the

distribution (Figure 7b).

3.4. FUTURE CLIMATE CHANGE IN RELATION TO HISTORICA CHANGES

The observed temporal variability between differ@tt-year periods at the seven
IMPROVE stations is compared with the inter-modalriability in Figure 8. For
comparison with observed natural variability we aseeference level the median of the
percentiles observed for the period 1961-1990.bAl plots are presented as deviations
from these observed median temperatures for 1960-19he observed climate
variability, including the observed climate chandring the typically 200 year long
observational period is substantially smaller thha inter-model variability. This is
particularly true for the Mediterranean stationke Telatively long positive tail for Cadiz
in winter is an effect of the first decades of aliagons in that series being very warm,
for the rest of the observational period the valitgbis significantly smaller. The
observed temporal variability of thé"%r 95" percentiles of 7, expressed as IQR
between 30-year periods, is typically 1-2K, whicincbe compared to 2-4K for the
simulated inter-model variability (IQR). Forf. (5" percentile) and Fnax (95"
percentile) the simulated inter-model variabilityfQR) is even larger, 3-6K. The
corresponding variability of the median (not shous)ess pronounced. The observed

temporal IQR of the median is about 1K or less, tuedinter-model IQR is about 2K for
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Tom and about 3K for Znn and bmax This difference is consistently seen when
comparing the IQR of the median and thé"/85 percentile at a station. Despite the
substantial inter-model variability, the climateadge signal (A2-CTRL) is well beyond
the natural variability. With the exception of Ca@an Fernando, the simulated change
is more pronounced in thé"&nd 95" percentiles than in the median (not shown). The
inter-model median climate change is well beyonthlibe observed temporal IQR and
the inter-model IQR. For Cadiz/San Fernando thepaatively weak climate change
signal and large modeled IQR is likely an effectlid maritime location of this station,
with the strong dampening effect of the Atlantic.the northeast, at Stockholm, Uppsala
and Saint Petersburg, where onby,Ts available, the simulated climate change siggal
substantial. Even though the IMPROVE stations atenecessarily representative for the

regions in Figure 1, they do follow the generatguat of regional biases (Table 1 and 2).

4. Summary and conclusions

The simulated daily maximum and minimum temperatumeten RCMs are compared to
the observed climate for the time period 1961-199@. found that the models generally
underestimate (overestimate) the maximum tempeatur northern (southern) Europe
during summer. In winter, minimum temperatures a@verestimated in large parts of
western and northern Europe while there is an @stienation in the southeast. It is also
found that the biases are larger in th&/88 percentiles than the corresponding biases in
the median, i.e. the biases generally increase rtsvéhe tails of the probability
distributions. We also show that there are largerimodel differences of, locally, up to

+10°C in the 98/5™ percentiles. Despite these large inter-model wiffees we find that
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the biases in the simulated "™5" percentiles are smaller than °€3 (+5°C) when
averaged over most (all) European sub-regions.rétienal biases in 9%™ percentiles
are significantly smaller than the biases in theoflte maxima (i.e. highest recorded) of
daily maximum temperatures during summer. The flattay be as large as %D as
reported for the HadRM3P model by Moberg and J¢p@84) for some single stations in
southern and southeastern Europe. We note thaH#iRM3H model analysed here
(which is very similar to HadRM3P) also has excamaily warm summer 3l biases in
southern and southeastern Europe, much larger dngnof the other nine models
considered. Hence, the problem with positively @hsummer temperatures discussed by

Moberg and Jones (2004) is not as serious for tter anodels.

We also investigate the climate change signal m@RRUDENCE common experiment
with the ten RCMs. The RCMs simulate consideralblanges in extreme temperatures
both in summer and winter, and in both cases theséarger than changes in the median
for large areas. As for the biases we also fingdainter-model differences. These
differences are briefly compared to a previousysiandluding four experiments with one
RCM driven by two different global models and twaission scenarios The inter-model
differences in Tnaxand Bmin at the 98 and 3" percentiles, respectively, are as large as
the differences between these aforementioned ewpats. This implies that, for the
extreme quantiles, the uncertainty in the amplitati¢he climate change signal due to
regional climate model formulation is as largelesuncertainty due to emission scenario

(A2 and B2) or GCM boundary forcing. Differencestviagen models results are
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amplified at the extremes in both simulation ofgem-day climate and in projections of

future climate change.

A comparison with historical data shows that theeag of the simulated extreme
temperatures is larger than the natural variabilitying the last centuries, at least for the
observational stations with long enough recordsveXbeless, the simulated future

climate change signal is found to be well beyoredrthtural variability at these locations.
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Figure Captions.

Figure 1. Location of observational stations in Europe useithis study. A + indicates a
station where i, is available in the ECA data set, anindicates Fmax and anO
indicates that 7, is available. The IMPROVE stations are indicatathwpen triangles.
The European subregions are indicated with letiirs: British Isles; SC — Scandinavia;
FR — France; EA — Eastern Europe; ME — Mid Eurofk; — Alps; IP — Iberian

Peninsula; MD — Mediterranean.

Figure 2. a) 98" percentile of Tmaxin summer (JJA); b) change in the"98ercentile of
Tomax In summer (JJA); c) Uy percentile of Tnn in winter (DJF); d) change in thé"5

percentile of Fmin in winter (DJF). All panels show results from HadaH. Unit: °C.

Figure 3. Upper panels show #5ercentiles of Taxin summer (JJA), and lower panels

show %" percentiles of Tnin in winter (DJF) for the ten RCMs. Unfic.

Figure 4. Ensemble median bias (CTRL-ECA) in a) thd"3®rcentile of Fnax during

summer (JJA) and b) th& percentile of Fin during winter (DJF). Unit°C.

Figure 5. For each model, the median bias (CTRL-ECA) atedéht percentiles in a)
Tomax during summer (JJA) and b, in winter (DJF) in the eight subregions (cf. Fig.
1). The models are marked as follows: 1 — CHRM; €L-M; 3 — HIRHAM-DK; 4 —

HadRM3H; 5 — HIRHAM-NO; 6 — PROMES; 7 — RACMO2; 8RC€AO; 9 - REMO; A
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— RegCM2. The black curve shows the median biassadhe 10-model ensemble. Unit:

°C.

Figure 6. Change between 1961-1990 and 2071-2100 (SRES AZ-LCih a) the 95
percentile of Fmaxin summer (JJA) and in b) thé& Bercentile of T, in winter (DJF) in

the ten RCMs. UnitC.

Figure 7. For each model, the average change between 1981 afl 2071-2100 (SRES
A2-CTRL) in the eight subregions (cf. Fig. 1). Tmdels are marked as in Fig 5. The

black curve shows the median change across theoh@irensemble. UnitC.

Figure 8. Simplified boxplots of the B percentiles of the winter daily mean temperature,
T.m (upper left) and daily minimum temperature (lovieft), and the 98 percentile of
the summer daily mean (upper right) and daily maxim(lower right) temperature. In
each section of the panels three boxplots for #ostéas shown. The stations are Cadiz
(Ca), Milan (Mi), Padua (Pa), Central Belgium (CB}pckholm (St), Uppsala (Up) and
Saint Petersburg (SP). For each station, the lefplot shows the observed spread
between different overlapping 30-year periods. fits¢ period is 1751-1780; the second
period is 1761-1790, etc. up to 1971-2000. As iatdid in the text, for the first two and
the last periods data is lacking for some statidime middle boxplot shows the spread
between the different RCMs for the same period (OTRnNd to the right is the RCM
spread for the future SRES A2 simulations. On tkexig is the deviation from the

observed 1961-1990 median which is shown with tagan acronym. In each boxplot
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the box extends from the lower to the upper quaniiith the line inside the box denoting
the median. Lines indicating the tails extend outivdrom the quartiles to the

minimum/maximum value. UnifC
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Table 1. Regional medians of bias (CTRL-ECA station) inteawodel experiment for
the summer (JJA) 2khax 95% percentile. The median, interquartile ran@2R(l and total
range taken from the individual medians are given model (right) and per region
(bottom), as well as the overall values acrossaltiels and regions (lower right corner).
The maximum number of ECA stations used in eacioneig given in the second row.

BI IP FR ME SC AL MD EA | Median IQR Rangg
N stations 3 17 4 25 19 6 9 13
CHRM -4.7 1.6 1.9 -0.3 -4.9 0.3 2.3 4.1 0.9 4.6 9/0
CLM -49  -1.4 -1.2 -0.7 -47 23 -13 0.4 -1.3 2.6 5.7
HIRHAM-DK -0.2 1.4 0.2 0.4 -1.3  -0.9 3.6 3.4 0.3 03. 48
HadRM3H -1.3 45 4.8 3.3 -1.9 3.6 6.0 7.2 4.1 45 09
HIRHAM-NO 41 07 -1.3 2.1 -35  -3.3 0.5 0.1 71 30 46
PROMES 27 04 -1.4 2.2 * -1.5 0.8 0.4 -1.4 2435
RACMO2 -1.0 0.3 -0.8 -1.7 -2.3 0.0 15 0.9 -0.4 1.93.8
RCAO -4.3 2.2 1.7 0.3 -3.6 0.8 0.8 3. 0.8 3.6 713
REMO -2.4 1.8 0.3 0.1 -3.3 1.2 -0.1 4.6 0.2 2.8 719
RegCM 0.0 2.0 2.3 0.4 -* 1.9 4.9 3.1 2.0 2.5 4.8
Median -2.6 15 0.3 -0.1 -3.4 0.1 1.2 3.2 0.3
IQR 33 1.7 31 2.1 21 2.7 31 3. 3.2
Range 4.9 5.9 6.2 5.5 3.6 6.9 7.3 783 12.1
*The simulations with PROMES and RegCM do not idewll of Scandinavia.
Table 2. Same as Table 1 but for winter (DJR).k 5% percentiles.

BI IP FR ME SC AL MD EA | Median IQR Rangg

N stations 3 17 4 25 19 6 9 13
CHRM 5.9 3.0 5.3 29 6.0 0.3 4.7 -2.2 3.8 4.0 82
CLM 6.3 -2.3 -0.7 0.8 3.3 -4.0 -2.8 -4.3 -15 55 0.6
HIRHAM-DK 2.2 13 2.3 2.0 4.0 -0.2 -0.9 -0.2 1.7 72. 54
HadRM3H 0.4 -1.0 0.1 2.2 3.9 0.6 -2.9 -1)7 0.3 2.86.8
HIRHAM-NO 5.8 2.8 3.4 3.7 5.8 1.3 2.6 -0.4 3.1 2.8 6.2
PROMES 5.5 2.4 3.2 5.0 -* 3.2 0.4 0.2 3.2 3.6 5/3
RACMO2 1.9 0.2 2.4 35 5.9 1.0 0.4 -0.8 1.4 2.6 6|7
RCAO 5.7 3.8 6.1 2.7 2.5 -4.0 4.8 -3 3.2 5.6 10.2
REMO 5.0 4.1 4.8 4.3 6.9 1.6 53 -1.8 4.5 2.3 8[2
RegCM 2.9 1.9 4.7 5.1 * 0.8 -1.2 2.2 1.9 4.9 78
Median 5.3 2.2 3.3 3.2 4.9 0.7 0.4 -15 2.3
IQR 3.6 2.7 2.7 2.1 2.4 15 5.9 1.5 4.2
Range 5.9 6.4 6.8 4.3 4.3 7.2 8.2 45 11.2
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