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Abstract  

Probability distributions of daily maximum and minimum temperatures in a suite of ten 

RCMs are investigated for i) biases compared to observations in the present day climate 

and ii) climate change signals compared to the simulated present day climate. The 

simulated inter-model differences and climate changes are also compared to the observed 

natural variability as reflected in some very long instrumental records. All models have 

been forced with driving conditions from the same global model and run for both a 

control period and a future scenario period following the A2 emission scenario from 

IPCC. We find that the bias in the 5th percentile of daily minimum temperatures in winter 

and at the 95th percentile of daily maximum temperature during summer is smaller than 

±3oC (±5oC) when averaged over most (all) European sub-regions. The simulated 

changes in extreme temperatures both in summer and winter are larger than changes in 

the median for large areas. Differences between models are larger for the extremes than 

for mean temperatures. A comparison with historical data shows that the spread in model 

predicted changes in extreme temperatures is larger than the natural variability during the 

last centuries. 

 

Keywords: Daily variability, maximum temperature, minimum temperature, climate 

change, regional climate models, temperature extremes, Europe, pdf, frequency 

distribution, percentiles 

 



 3

1. Introduction 

Regional climate models (RCMs) have the potential to provide detailed information not 

only on mean conditions but also on extremes (Beniston et al., 2006). Given quasi-

observed lateral boundary conditions, i.e. from reanalysis experiments, RCMs have been 

shown to realistically simulate variability of many climate parameters on different 

temporal scales (Giorgi et al., 2001). When the RCMs are forced with boundary 

conditions from GCMs, however, these boundary conditions often introduce systematic 

biases in the simulation of the present climate (Noguer et al., 1998). Some of the 

systematic biases are amplified when looking into more extreme events like maximum 

and minimum temperatures (e.g. Moberg and Jones (2004)) though this is not always the 

case, e.g. for percentage errors in precipitation extremes (Buonomo et al., 2006). In the 

present study, variability and scenario changes in daily maximum and minimum 

temperatures in a suite of ten RCMs taking part in the European project PRUDENCE 

(Christensen et al., 2006) are investigated. The RCMs were driven by boundary 

conditions from the same GCM scenario.  

 

Changes in extreme temperatures over long time series have been described by Yan et al. 

(2002) using data from ten stations in Europe and China. They conclude that cold 

extremes have been decreasing and warm extremes increasing during recent decades, but 

also that there have been earlier changes in these extremes. In an analysis of more than 

100 European station records for the second half of the 20th century, Klein Tank and 

Können (2003) arrived at a similar conclusion, namely that the cold extremes have been 

decreasing and the warm extremes increasing during the last quarter of the 20th century. 
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Here we relate the simulated changes not just to model and inter-model variability but 

also to the natural variability as reflected in some very long instrumental records.  

 

In a previous study, Kjellström (2004) investigated daily variability of daily mean 2m-

temperature and its changes under changed climatic conditions. Here, we look into daily 

maximum and minimum 2m-temperatures in climate simulations over Europe, including 

their upper and lower percentiles relating to the occurrence of heatwaves and cold spells, 

respectively. Changes of these parameters could also be affected by changes in 

interannual climate variability. It has been suggested that in a future climate the summer 

interannual variability of surface temperatures might increase as an effect of changes 

related to land-surface processes (Schär et al., 2004). Most of the models used in the 

PRUDENCE consortium show indeed some increase in interannual temperature 

variability during the summer season, but there are considerable inter-model differences 

regarding the amplitude, geographical location and seasonal timing of the effect 

(Lenderink et al. 2006; Vidale et al. 2006). 

 

2. Methods and data 

2.1. MODELS 

We use results from ten RCMs, nine from PRUDENCE and an additional one run by 

MetNo (HIRHAM-NO, Hanssen-Bauer et al., 2003), see Jacob et al. (2006) and Déqué et 

al. (2006) for details. The lateral boundary conditions for all RCMs were provided by the 

GCM HadAM3H (see Buonomo et al., 2006 for details) and the lower (sea-surface) 

boundary condition for this were taken from observations and HadCM3 (see Rowell 2005 
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for details). All models have been run for a control period (CTRL), 1961-1990, and a 

future scenario period (A2), 2071-2100, following the A2 emission scenario from IPCC 

(Nakićenović et al., 2000). We study daily maximum (T2max) and minimum (T2min) 

surface air temperatures as well as the daily mean temperature (T2m). The T2max and T2min 

variables are defined as the maximum and minimum, respectively, of all time-step 

calculations for a day, which is defined as the time between 00 and 00 UTC. The daily 

mean is simply the average over these time-steps. The length of the time-steps is 

generally about 5 minutes in the models except in RACMO (12 minutes) and RCAO (36 

minutes).  

 

2.2. OBSERVATIONAL STATION DATA 

We compare model data to observational data from the European Climate Assessment 

(ECA; Klein Tank et al., 2002). This dataset consists of data from about 200 stations 

covering much of Europe. Here, we look at the time period 1961-1990. We require that 

station series should have data for at least 90% of the days in that time period, leaving 

147 stations with a geographical distribution as shown in Figure 1.  

 

In addition to the ECA dataset we also use long-term data from seven stations from the 

IMPROVE dataset (Camuffo and Jones, 2002) that are also shown in Figure 1. These 

stations report temperature for the last few centuries reaching back into the early 

instrumental era. The stations are: Cadiz/San Fernando, southern Spain 1786-2000; 

Padova, northern Italy 1725-1997; Milan, northern Italy 1763-1998; Central Belgium, a 

composite covering 1767-1998 based on several nearby stations; Uppsala, central 
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Sweden 1722-2000; Stockholm, central Sweden 1756-1998; and St Petersburg, Russia 

1743-1996. The dataset contains homogenized and quality controlled daily mean, 

maximum and minimum temperatures (for Stockholm, Uppsala and St Petersburg only 

daily mean temperature is available). These long-term records are used here to put the 

model simulated climate change signals in the perspective of longer-term climate 

variability.  

 

2.3. LINKING MODEL GRIDCELL DATA TO STATION DATA 

For each ECA station, the covering gridcell of each model was used for the bias 

assessment. Point measurements, however, may not be comparable to the size of a model 

grid box, which is about 50x50 kilometers in the RCMs studied here as the models do not 

simulate subgrid-scale variability. There is a particular problem in coastal regions where 

observational stations are influenced both by land and sea. The model grid box covering 

the coastal station could be either land or sea depending on the land-sea mask in the 

model. We have therefore excluded all combinations of coastal stations and model sea 

grid boxes from our comparisons. For models with fractional land/sea gridboxes we 

excluded gridcells with more than 50% sea.  

 

Regions of complex topography also give rise to various problems. Differences between 

model and station altitude have been accounted for using a lapse rate of 0.0065K/m. This 

average lapse rate does not account for other local deviations or specific weather 

conditions. As we are focusing on comparisons of climatological differences and not per-

observation differences, this simplification is reasonable with the exception of where 
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there is a large altitudinal difference between the station and model gridcell. We therefore 

exclude model gridcells where this difference exceeds 1000m. Further, high altitude 

stations, above 2000m, have been excluded from the comparisons since these stations 

often tend to sample free tropospheric conditions or are strongly affected by snow cover 

and glaciers. These selection criteria result in some variations of the number of models 

that are used in the ensemble averages. Thus, a final criterion for including any station is 

that at least 70% of the models are included in the ensemble average for that station. 

 

In the assessment of model behaviour we focus on the median and inter-quartile range 

(IQR) as robust measures of the model ensemble average (typical) bias and inter-model 

variation (see Ferro et al. 2005). In this way we avoid undue influence from any one 

deviating model. The spatial patterns of the median maps and corresponding mean maps 

(not shown) are however very similar. This is also the case for the IQR and standard 

deviation maps (not shown), although the IQR maps show a wider inter-model variation 

compared to the corresponding standard deviation maps. To further reduce the possible 

influence from station specific local conditions we average, again using medians, both the 

model bias and simulated climate change on a regional basis. The regions are those used 

by Déqué et al. (2006) and Jacob et al. (2006), with a slight relaxation of the region 

boundaries (Figure 1) to allow the inclusion of three ECA stations that otherwise were 

just outside any region. For the British Isles and France regions there are only few 

stations available, and in the Mediterranean region stations are located along the coast, 

apart from the interior of the Iberian Peninsula.  
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We do not fit any probability density function to the observed and simulated temperature 

distributions, but rather choose to present the simulated empirical distributions in terms 

of selected percentiles. We have analyzed the 1, 5, 10, 25, 50, 75, 90, 95 and 99 

percentiles but choose to focus our presentation on conditions at the wintertime (DJF) 5th 

and summertime (JJA) 95th percentiles. In this way we can describe features not just of 

the most extreme situations, but more generally of events occurring on average 4-5 days 

per season (the three-month periods DJF and JJA).  

 

3. Results 

3.1. PRESENT-DAY CLIMATE, DAILY MAXIMUM TEMPERATURE IN SUMMER 

In summer the 95th percentiles for simulated T2max are highest in southern Europe with 

maximum temperatures of about or above 40oC (Fig 3a). The general spatial patterns are 

reproduced by the RCMs though there are some large differences, locally up to 10oC 

(Figure 2a). HadRM3H has relatively small deviations from its driving model, of a 

similar level to those in RCAO and smaller than the other RCMs, probably related to the 

fact that it shares common physical parameterizations. The ensemble median of the 95th 

percentile of T2max during JJA underestimates the highest temperatures in northern and 

northwestern Europe and overestimates the high temperatures in southern and eastern 

Europe compared to ECA (Figure 4a and Table 1). For most stations except in the White 

Sea region, the ensemble median bias is within ±3°C. There is, however, a rather large 

spread among the different models as summarized for each region in Table 1. The 

negative bias over the British Isles and Scandinavia is evident in almost all models. The 

underestimation of maximum temperatures in RCAO for northernmost Europe is 
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discussed by Räisänen et al. (2003). They found that this underestimation is related to too 

cloudy and rainy conditions in this simulation. In a reanalysis-driven experiment, 

however, Jones et al. (2004) find that RCA2 (the atmospheric component of RCAO) 

simulates both cloud cover and precipitation in close agreement to observations in 

northern Europe, suggesting that the driving global data from HadAM3H contributes to 

the too low maximum temperatures, an effect that could influence all RCMs. Further, the 

95th percentile of T2max from the reanalysis-driven experiment by Jones et al. (not shown) 

is generally 1-2oC warmer in Scandinavia and the British Isles than that of the RCAO run 

driven by HadAM3H used in this study. This supports the idea that the driving 

boundaries contributes to the underestimation of maximum temperatures. Nevertheless, 

Lenderink et al. (2006) show that the interannual monthly temperature variability in 

RACMO2 driven by re-analysis boundary conditions is close to the variability in the 

HadAM3H driven run. Further inspection of the results of these two runs with RACMO2, 

revealed no significant differences in the simulated T2max 95th percentile over Europe 

except for the southeastern part.  

 

In the Iberian Peninsula, the Mediterranean region and eastern Europe the tendency is 

reversed with an overestimation of the T2max 95th percentiles in most models. This is 

particularly the case for the HadRM3H model that is also (much) too warm in the three 

intermediate regions; France, Mid-Europe and the Alps. These regions are interesting 

since some models show a warm bias (HadRM3H, RegCM2 and RCAO) while some 

show a cold bias (CLM, PROMES, HIRHAM-NO and RACMO2). The warm bias in 

RCAO may partly be related to the relatively small storage capacity of the soils in that 
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model (van den Hurk et al., 2004) and, partly to the clear sky portion of the RCA2 solar 

radiation code that transmits too much radiation to the surface (Jones et al., 2004). 

Furthermore, Moberg and Jones (2004) noted that a warm bias in southern Europe in 

HadRM3P (which is very similar to HadRM3H) is associated to low or zero simulated 

soil moisture. Lenderink et al. (2006) investigate interannual variability of monthly mean 

temperature in the PRUDENCE simulations. They conclude that on the one hand soil 

drying and evaporation, and on the other hand clouds and their radiative properties, are 

major issues in determining the interannual variability of temperature in these 

simulations. They find that CLM and PROMES have a strong cloud (radiative) control 

and that RACMO2 has a strong evaporative control on temperature variability. It is 

therefore expected that these models are colder than the others in these intermediate 

regions. Our results indicate that their findings about interannual monthly mean 

temperature variability can be extended also to the more extreme daily temperature 

conditions discussed in the present study. It is interesting to note that the two versions of 

HIRHAM show very different patterns of bias magnitude. We have not scrutinized the 

two simulations in detail. With the exception of the HadRM3H model, all models have an 

overall median bias within ±2°C. This is an interesting result as previously it was noted 

that HadRM3H follows most closely its driving model. Thus the other models are 

deviating more from their driving model but are simulating results which are closer to 

observation. It would appear that there is a benefit from having the same formulation of 

the physics in the RCM as in the GCM to improve consistency. However, it still leaves 

the question open as to whether, in this case, the RCM concerned provides a more 
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realistic projection of regional climate change given its larger biases whilst simulating the 

current climate. 

 

The ensemble median bias across models and stations (i.e. the median of all the models’ 

biases) is 0.3°C. The overall spatial pattern of biases in the 95th percentile for T2max is 

similar to that of the median bias in T2max (not shown). A difference, however, is that the 

warm bias in the southeast is stronger and that it extends further to the north in eastern 

Europe/Russia in the 95th percentile. The fact that model biases affect large parts of the 

probability distribution is shown in Figure 5a where regional biases are shown for nine 

different percentiles. In eastern Europe the positive bias for high percentiles is large, 

whereas it is small or negative for low percentiles. In several regions, the spread among 

the RCMs is larger at the 95th and 99th percentile as compared to the median and low 

percentiles. The cold bias for PROMES and CLM in some regions, as noticed at the 95th 

percentile, is even more pronounced at the lower temperature percentiles. HadRM3H 

shows a very pronounced increase in bias for the higher percentiles in most regions. The 

latter is most likely related to the drying out of soils (see Lenderink et al., 2006; Vidale et 

al. 2006) 

 

3.2. PRESENT-DAY CLIMATE, DAILY MINIMUM TEMPERATURE IN WINTER 

The 5th percentiles for simulated T2min in winter are lowest in eastern and northern Europe 

with temperatures well below -30oC over parts of Russia in most models (Figure 3). In 

the western maritime climate the RCMs give 5th percentiles of minimum temperatures 

close to 0oC. The main features of the geographical distribution of the 5th percentiles of 
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minimum temperatures are similar to the HadAM3H simulation (Figure 2c) though again 

there are local differences of up to 10oC. As in summer, HadRM3H deviates little from 

its global driving model and is in this case closer than the other RCMs.. Cold 

temperatures in winter are often associated with situations with snow-covered ground and 

clear skies. A look at the maximum snow depth in the models reveals some differences 

(not shown). In some models, most notably RegCM2, CHRM, RCAO, and REMO, snow 

is very rare in low-lying parts of the British Isles, Western France, Spain and Italy, while 

in others, like CLM, PROMES, RACMO2 and HIRHAM-DK snow occurs more often in 

these regions. Another process that strongly affects the occurrence of cold winter 

temperatures is the freezing of soil moisture (Viterbo et al., 1999). There are substantial 

model-to-model differences in the representation of this process. In Figure 4b we 

compare the ensemble median of the DJF 5th percentiles of T2min to the ECA 

observations. The pattern of biases is similar to that in summer, though reversed in the 

sense that the bias in western and northern Europe is now positive and the average bias in 

southeast is negative. Typical median biases for most stations are in the range ±3°C, apart 

from generally higher values in Scandinavia.  

 

As in summer for the 95th percentile of T2max, the inter-model variability in the 5th 

percentile for T2min in winter is large (Table 2), particularly for many coastal stations (not 

shown). The RCMs generally agree on the sign of the bias in most regions except for the 

Alps, Mediterranean region and Iberian Peninsula. Notably, in the Alps CLM and RCAO 

show a marked opposite (i.e. negative) sign of biases compared to the other models, and 

in the Iberian Peninsula, CLM and HadRM3H show a negative bias while the other 
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models have positive biases. In the Mediterranean and eastern Europe the bias pattern is 

more diverse: with PROMES and RACMO2 showing little bias in both regions; CHRM, 

HIRHAM-NO, RCAO and REMO having a positive bias in the Mediterranean region and 

negative bias in eastern Europe; and CLM, HIRHAM-DK, HadRM3H and RegCM 

having a negative bias in both regions. For RCAO, the too mild climate in the north can 

be explained by the circulation being too strongly influenced by westerly winds during 

winter (cf. Räisänen et al., 2003). Since the forcing conditions from the global model are 

the same in all experiments this would imply that some fraction of these warm biases is 

an effect of the boundary conditions given by the driving global model. Van Ulden et al. 

(2006) show that the HadAM3H simulation is characterized by a too strong westerly flow 

in winter. They estimate that the bias in circulation induces a positive mean temperature 

bias of 1.5oC in central Europe. In agreement, using the RACMO2 model central Europe 

and Southern Scandinavia are about 1.5oC warmer in the presently discussed HadAM3H 

driven simulation compared to a simulation employing the ERA40 re-analysis for 

boundary conditions (van Ulden et al., 2006). The different sizes of biases in different 

models show that the RCMs have different sensitivity to the boundary conditions. 

Compared to biases in mean conditions the biases in the 5th percentile are larger in most 

of the regions (Fig 5b). Again, the spread among models is largest at the more extreme 

part of the low tail of the distribution with differences at the 1st percentile ranging up to 

about 10oC in some areas.  

 

 

3.3. FUTURE CLIMATE CHANGE SCENARIO 
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The projected warming in summer is most dramatic in central and southern Europe in the 

RCMs. The model range of the change in mean temperature for JJA (not shown) is 

between 4 and at least 7oC in the Iberian Peninsula, France, the Mediterranean region and 

in the Alps (Déqué et al., 2006). In T2max the mean signal (not shown) is even larger and 

for the 95th percentile of T2max it reaches 10oC in a few areas in some models (Figure 6). 

Figure 6 reveals large differences between the different RCMs. Both the overall pattern 

and the size of the changes differ notably. A common feature is that all models simulate a 

generally larger increase in T2max on warm days in southern Europe than in the north, 

with the exception of HadRM3H. However, it is again interesting to note that for the 

other RCMs this is a deviation from the driving GCM; the simulated climate change 

signal in HadRM3H is very similar to the results obtained with HadAM3H. Most RCMs 

show a band-like structure of most pronounced warming that extends from France 

eastwards over the continent, although this structure is more or less displaced to the 

south. The differences between the ten RCMs are actually as large as the differences 

between the four different realizations of climate change with one of the RCMs (RCAO) 

driven by two different emission scenarios (A2 and B2) and lateral boundary conditions 

from two GCMs (Kjellström, 2004). Resulting differences between the RCM with the 

lowest (CLM) and highest (HadRM3H) T2max changes are about 10oC in large parts of 

Europe. Just as for the bias in the control climate simulations there is a clear tendency for 

the climate change signal in summer T2max to be larger for the more extreme situations 

(95th and 99th percentiles) than in the median (Figure 7a). From the current analysis it is 

not obvious whether this is due to variability increases on the interannual or daily range, 

or a combination of the two. The spread among the models is larger in the upper tail of 
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the distribution compared to the lower tail for all regions. The largest inter-model 

differences occur in central Europe. This is consistent with the discussion on the role of 

parameterized physical processes in section 3.1. 

 

In winter all models show substantial increases in mean temperatures over eastern Europe 

and Scandinavia. In T2min the mean warming signal is above 4oC in large parts of eastern 

Europe and Russia (Déqué et al. 2006). Just like in summer the change in the more 

extreme conditions is larger compared to the change in the average. The changes for the 

5th percentile are shown in Figure 6. The largest differences compared to the control 

climate are very large, up to 15oC in some locations in REMO and RCAO. At the same 

time it can be seen that the spread between the models is again very large with 

differences between models of up to 10oC. As in summer, HadRM3H is close to 

HadAM3H The considerable spread between the RCMs is about twice as large as the 

spread between the four experiments with one only RCM forced by different emission 

scenarios and different lateral boundary conditions in Kjellström (2004). Common to all 

the models is a connection between the region of maximum climate change signal and the 

withdrawal of the snow cover in the models. This connection indicates the importance of 

the feedback processes involving temperature, snow cover and albedo on the temperature 

climate in these models. Decreasing snow cover leads to lower albedo which allows more 

shortwave radiation to be absorbed at the ground. Also, the reduced snow cover 

facilitates heat exchange between the relatively warm soil and the atmosphere. Both these 

effects lead to higher temperatures which in turn act to further reduce the snow cover. 

The importance of these feedback processes is illustrated by the fact (not shown 
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graphically) that the areas of maximum changes in the 5th percentile of T2min are, in most 

models, covered with snow during more than 50% of the time in CTRL. In A2 these 

regions generally have snow in less than 25% of the time. Again, the climate change 

signal is stronger and the spread between the models larger near the lower tail of the 

distribution (Figure 7b).  

 

3.4. FUTURE CLIMATE CHANGE IN RELATION TO HISTORICAL CHANGES 

The observed temporal variability between different 30-year periods at the seven 

IMPROVE stations is compared with the inter-model variability in Figure 8. For 

comparison with observed natural variability we use as reference level the median of the 

percentiles observed for the period 1961-1990. All box plots are presented as deviations 

from these observed median temperatures for 1961-1990. The observed climate 

variability, including the observed climate change during the typically 200 year long 

observational period is substantially smaller than the inter-model variability. This is 

particularly true for the Mediterranean stations. The relatively long positive tail for Cadiz 

in winter is an effect of the first decades of observations in that series being very warm, 

for the rest of the observational period the variability is significantly smaller. The 

observed temporal variability of the 5th or 95th percentiles of T2m, expressed as IQR 

between 30-year periods, is typically 1-2K, which can be compared to 2-4K for the 

simulated inter-model variability (IQR). For T2min (5th percentile) and T2max (95th 

percentile) the simulated inter-model variability (IQR) is even larger, 3-6K. The 

corresponding variability of the median (not shown) is less pronounced. The observed 

temporal IQR of the median is about 1K or less, and the inter-model IQR is about 2K for 
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T2m and about 3K for T2min and T2max. This difference is consistently seen when 

comparing the IQR of the median and the 95th/5th percentile at a station. Despite the 

substantial inter-model variability, the climate change signal (A2-CTRL) is well beyond 

the natural variability. With the exception of Cadiz/San Fernando, the simulated change 

is more pronounced in the 5th and 95th percentiles than in the median (not shown). The 

inter-model median climate change is well beyond both the observed temporal IQR and 

the inter-model IQR. For Cadiz/San Fernando the comparatively weak climate change 

signal and large modeled IQR is likely an effect of the maritime location of this station, 

with the strong dampening effect of the Atlantic. In the northeast, at Stockholm, Uppsala 

and Saint Petersburg, where only T2m is available, the simulated climate change signal is 

substantial. Even though the IMPROVE stations are not necessarily representative for the 

regions in Figure 1, they do follow the general pattern of regional biases (Table 1 and 2). 

 

4. Summary and conclusions 

The simulated daily maximum and minimum temperatures in ten RCMs are compared to 

the observed climate for the time period 1961-1990. It is found that the models generally 

underestimate (overestimate) the maximum temperatures in northern (southern) Europe 

during summer. In winter, minimum temperatures are overestimated in large parts of 

western and northern Europe while there is an underestimation in the southeast. It is also 

found that the biases are larger in the 95th/5th percentiles than the corresponding biases in 

the median, i.e. the biases generally increase towards the tails of the probability 

distributions. We also show that there are large inter-model differences of, locally, up to 

±10oC in the 95th/5th percentiles. Despite these large inter-model differences we find that 
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the biases in the simulated 95th/5th percentiles are smaller than ±3oC (±5oC) when 

averaged over most (all) European sub-regions. The regional biases in 95th/5th percentiles 

are significantly smaller than the biases in the absolute maxima (i.e. highest recorded) of 

daily maximum temperatures during summer. The latter may be as large as 10oC as 

reported for the HadRM3P model by Moberg and Jones (2004) for some single stations in 

southern and southeastern Europe. We note that the HadRM3H model analysed here 

(which is very similar to HadRM3P) also has exceptionally warm summer T2max biases in 

southern and southeastern Europe, much larger than any of the other nine models 

considered. Hence, the problem with positively biased summer temperatures discussed by 

Moberg and Jones (2004) is not as serious for the other models.  

 

We also investigate the climate change signal in the PRUDENCE common experiment 

with the ten RCMs. The RCMs simulate considerable changes in extreme temperatures 

both in summer and winter, and in both cases these are larger than changes in the median 

for large areas. As for the biases we also find large inter-model differences. These 

differences are briefly compared to a previous study including four experiments with one 

RCM driven by two different global models and two emission scenarios The inter-model 

differences in T2max and T2min, at the 95th and 5th percentiles, respectively, are as large as 

the differences between these aforementioned experiments. This implies that, for the 

extreme quantiles, the uncertainty in the amplitude of the climate change signal due to 

regional climate model formulation is as large as the uncertainty due to emission scenario 

(A2 and B2) or GCM boundary forcing. Differences between models results are 
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amplified at the extremes in both simulation of present-day climate and in projections of 

future climate change.  

 

A comparison with historical data shows that the spread of the simulated extreme 

temperatures is larger than the natural variability during the last centuries, at least for the 

observational stations with long enough records. Nevertheless, the simulated future 

climate change signal is found to be well beyond the natural variability at these locations. 
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Figure Captions. 
 
Figure 1. Location of observational stations in Europe used in this study. A + indicates a 

station where T2min is available in the ECA data set, an × indicates T2max, and an Ο 

indicates that T2m is available. The IMPROVE stations are indicated with open triangles. 

The European subregions are indicated with letters: BI – British Isles; SC – Scandinavia; 

FR – France; EA – Eastern Europe; ME – Mid Europe; AL – Alps; IP – Iberian 

Peninsula; MD – Mediterranean. 

 

Figure 2. a) 95th percentile of T2max in summer (JJA); b) change in the 95th percentile of 

T2max in summer (JJA); c) 5th percentile of T2min in winter (DJF); d) change in the 5th 

percentile of T2min in winter (DJF). All panels show results from HadAM3H. Unit: oC. 

 

Figure 3. Upper panels show 95th percentiles of T2max in summer (JJA), and lower panels 

show 5th percentiles of T2min in winter (DJF) for the ten RCMs. Unit: oC. 

 

Figure 4. Ensemble median bias (CTRL-ECA) in a) the 95th percentile of T2max during 

summer (JJA) and b) the 5th percentile of T2min during winter (DJF). Unit: oC. 

 

Figure 5. For each model, the median bias (CTRL-ECA) at different percentiles in a) 

T2max during summer (JJA) and b) T2min in winter (DJF) in the eight subregions (cf. Fig. 

1). The models are marked as follows: 1 – CHRM; 2 – CLM; 3 – HIRHAM-DK; 4 – 

HadRM3H; 5 – HIRHAM-NO; 6 – PROMES; 7 – RACMO2; 8 – RCAO; 9 – REMO; A 
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– RegCM2. The black curve shows the median bias across the 10-model ensemble. Unit: 

oC.  

 

Figure 6. Change between 1961-1990 and 2071-2100 (SRES A2-CTRL) in a) the 95th 

percentile of T2max in summer (JJA) and in b) the 5th percentile of T2min in winter (DJF) in 

the ten RCMs. Unit: oC. 

 

Figure 7. For each model, the average change between 1961-1990 and 2071-2100 (SRES 

A2-CTRL) in the eight subregions (cf. Fig. 1). The models are marked as in Fig 5. The 

black curve shows the median change across the 10-model ensemble. Unit: oC. 

 

Figure 8. Simplified boxplots of the 5th percentiles of the winter daily mean temperature, 

T2m (upper left) and daily minimum temperature (lower left), and the 95th percentile of 

the summer daily mean (upper right) and daily maximum (lower right) temperature. In 

each section of the panels three boxplots for a station is shown. The stations are Cadiz 

(Ca), Milan (Mi), Padua (Pa), Central Belgium (CB), Stockholm (St), Uppsala (Up) and 

Saint Petersburg (SP). For each station, the left boxplot shows the observed spread 

between different overlapping 30-year periods. The first period is 1751-1780; the second 

period is 1761-1790, etc. up to 1971-2000. As indicated in the text, for the first two and 

the last periods data is lacking for some stations. The middle boxplot shows the spread 

between the different RCMs for the same period (CTRL), and to the right is the RCM 

spread for the future SRES A2 simulations. On the y-axis is the deviation from the 

observed 1961-1990 median which is shown with the station acronym. In each boxplot 
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the box extends from the lower to the upper quartile, with the line inside the box denoting 

the median. Lines indicating the tails extend outward from the quartiles to the 

minimum/maximum value. Unit: oC 
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 Table 1. Regional medians of bias (CTRL-ECA station) in each model experiment for 
the summer (JJA) T2max 95% percentile. The median, interquartile range (IQR) and total 
range taken from the individual medians are given per model (right) and per region 
(bottom), as well as the overall values across all models and regions (lower right corner). 
The maximum number of ECA stations used in each region is given in the second row.  
 BI IP FR ME SC AL MD EA Median IQR Range 
N stations 3 17 4 25 19 6 9 13    
CHRM -4.7 1.6 1.9 -0.3 -4.9 0.3 2.3 4.1 0.9 4.6 9.0 
CLM -4.9 -1.4 -1.2 -0.7 -4.7 -2.3 -1.3 0.8 -1.3 2.6 5.7 
HIRHAM-DK -0.2 1.4 0.2 0.4 -1.3 -0.9 3.6 3.4 0.3 3.0 4.8 
HadRM3H -1.3 4.5 4.8 3.3 -1.9 3.6 6.0 7.2 4.1 4.5 9.0 
HIRHAM-NO -4.1 -0.7 -1.3 -2.1 -3.5 -3.3 0.5 -0.1 -1.7 3.0 4.6 
PROMES -2.7 0.4 -1.4 -2.2 -* -1.5 0.8 0.4 -1.4 2.4 3.5 
RACMO2 -1.0 0.3 -0.8 -1.7 -2.3 0.0 1.5 0.9 -0.4 1.9 3.8 
RCAO -4.3 2.2 1.7 0.3 -3.6 0.8 0.8 3.0 0.8 3.6 7.3 
REMO -2.4 1.8 0.3 0.1 -3.3 1.2 -0.1 4.6 0.2 2.8 7.9 
RegCM 0.0 2.0 2.3 0.4 -* 1.9 4.9 3.7 2.0 2.5 4.8 
Median -2.6 1.5 0.3 -0.1 -3.4 0.1 1.2 3.2 0.3   
IQR 3.3 1.7 3.1 2.1 2.1 2.7 3.1 3.3  3.2  
Range 4.9 5.9 6.2 5.5 3.6 6.9 7.3 7.3   12.1 
*The simulations with PROMES and RegCM do not include all of Scandinavia. 
 
 
Table 2. Same as Table 1 but for winter (DJF) T2min 5% percentiles. 
 BI IP FR ME SC AL MD EA Median IQR Range 
N stations 3 17 4 25 19 6 9 13    
CHRM 5.9 3.0 5.3 2.9 6.0 0.3 4.7 -2.2 3.8 4.0 8.2 
CLM 6.3 -2.3 -0.7 0.8 3.3 -4.0 -2.8 -4.3 -1.5 5.5 10.6 
HIRHAM-DK 2.2 1.3 2.3 2.0 4.0 -0.2 -0.9 -0.2 1.7 2.7 5.4 
HadRM3H 0.4 -1.0 0.1 2.2 3.9 0.6 -2.9 -1.7 0.3 2.8 6.8 
HIRHAM-NO 5.8 2.8 3.4 3.7 5.8 1.3 2.6 -0.4 3.1 2.8 6.2 
PROMES 5.5 2.4 3.2 5.0 -* 3.2 0.4 0.2 3.2 3.6 5.3 
RACMO2 1.9 0.2 2.4 3.5 5.9 1.0 0.4 -0.8 1.4 2.6 6.7 
RCAO 5.7 3.8 6.1 2.7 2.5 -4.0 4.8 -3.1 3.2 5.6 10.2 
REMO 5.0 4.1 4.8 4.3 6.9 1.6 5.3 -1.3 4.5 2.3 8.2 
RegCM 2.9 1.9 4.7 5.1 -* 0.8 -1.2 -2.2 1.9 4.9 7.3 
Median 5.3 2.2 3.3 3.2 4.9 0.7 0.4 -1.5 2.3   
IQR 3.6 2.7 2.7 2.1 2.4 1.5 5.9 1.5  4.2  
Range 5.9 6.4 6.8 4.3 4.3 7.2 8.2 4.5   11.2 

 


